skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Three-dimensional mapping of the greater palatine artery location and physiology
Objective:To develop a novel technique for localizing and reconstructing the greater palatine artery (GPA) using three-dimensional (3D) technology. Methods:A miniaturized intraoral ultrasound transducer was used to imaging landmarks including the GPA, gingival margin (GM), and palatal masticatory mucosa (PMM). A 5-mm-thick solid hydrogel couplant was integrated to replace traditional ultrasound gel and avoid bubbles when moving the transducer. Results:A panorama image provided the relative localization of landmarks including the GPA, PMM, and hard palate. Short- and long-axis imaging of GPA was performed in five subjects including 3D mapping of GPA branches and surrounding tissues in a volume of 10 mm × 8 mm × 10 mm. Full-mouth Doppler imaging was also demonstrated on both the dorsal and ventral tongue as well as buccal mucosa and sublingual region on two subjects. Conclusions:This study can measure the vertical distance from the GM to the GPA and depth from PMM to GPA and visualize the GPA localization in a 3D manner, which is critical to evaluate the available volume of palatal donor tissues and avoid sectioning of GPA during surgical harvesting of the tissues. Finally, the transducer’s small size facilitates full-mouth Doppler imaging with the potential to improve the assessment, diagnosis, and management of oral mucosa.  more » « less
Award ID(s):
2207409
PAR ID:
10477747
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
British Institute of Radiology
Date Published:
Journal Name:
Dentomaxillofacial Radiology
ISSN:
0250-832X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we present a novel design framework of synthetic radial aperture focusing for three-dimensional (3D) transrectal ultrasound imaging (TRUS-rSAF), in which multiple transmittance/reception events at different scanning angles are synthesized to reconstruct a radial plane in the target volume, securing high spatial resolution and texture uniformity. A theory-based design approach has not been available to push the envelope of the 3D rSAF technique. Herein, a closed-form analytical description of the TRUS-rSAF method is presented for the first time, effectively delineating spatial resolution and grating lobe positions in the radial dimension of a TRUS transducer. We demonstrate a solid optimization workflow based on the theoretical foundation to improve its spatiotemporal resolution, grating lobe artifacts, and signal-to-noise ratio. A specific design criterion was considered to outperform a clinical 3D TRUS imaging as a reference (TRUS-REF), where each radial plane is reconstructed with a single transmittance/reception event using a motorized actuator. The optimized TRUS-rSAF method significantly enhanced spatial resolution up to 50% over the TRUS-REF method while providing clinically effective temporal resolution (2–8 volume/sec) with negligible grating lobe artifacts. The results indicate that the proposed design approach would enable a novel TRUS imaging solution in clinics. 
    more » « less
  2. Abstract PurposeTo develop a robust single breath‐hold approach for volumetric lung imaging at 0.55T. MethodA balanced‐SSFP (bSSFP) pulse sequence with 3D stack‐of‐spiral (SoS) out‐in trajectory for volumetric lung imaging at 0.55T was implemented. With 2.7× undersampling, the pulse sequence enables imaging during a 17‐s breath‐hold. Image reconstruction is performed using 3D SPIRiT and 3D l1‐Wavelet regularizations. In two healthy volunteers, single breath‐hold SoS out‐in bSSFP was compared against stack‐of‐spiral UTE (spiral UTE) and half‐radial dual‐echo bSSFP (bSTAR), based on signal intensity (SI), blood‐lung parenchyma contrast, and image quality. In six patients with pathologies including lung nodules, fibrosis, emphysema, and air trapping, single breath‐hold SoS out‐in and bSTAR were compared against low‐dose computed tomography (LDCT). ResultsSoS out‐in bSSFP achieved 2‐mm isotropic resolution lung imaging with a single breath‐hold duration of 17 s. SoS out‐in (2‐mm isotropic) provided higher lung parenchyma and blood SI and blood‐lung parenchyma contrast compared to spiral UTE (2.4 × 2.4 × 2.5 mm3) and bSTAR (1.6‐mm isotropic). When comparing SI normalized by voxel size, SoS out‐in has lower lung parenchyma signal, higher blood signal, and a higher blood‐lung parenchyma contrast compared to bSTAR. In patients, SoS out‐in bSSFP was able to identify lung fibrosis and lung nodules of size 4 and 8 mm, and breath‐hold bSTAR was able to identify lung fibrosis and 8 mm nodules. ConclusionSingle breath‐hold volumetric lung imaging at 0.55T with 2‐mm isotropic spatial resolution is feasible using SoS out‐in bSSFP. This approach could be useful for rapid lung disease screening, and in cases where free‐breathing respiratory navigated approaches fail. 
    more » « less
  3. The live visualization with fast kinetics of the interaction between cells has been long term challenges because of the lack of efficient stimulation methods. We propose an approach to achieve single cell resolution stimulation and FRET-base calcium live cell imaging to visualize fast kinetics of calcium transport between physically connect neighboring cells. Chemical stimulation stimulates cells within a dish at the same time and is not suitable for the study of cell-cell interaction. We replaced chemical stimulation with ultrasound-based mechanical stimulation approach to provide precise spatiotemporal resolution. To achieve this, we integrated 3D translation stages and epi-fluorescence microscope and a developed 150 MHz high frequency ultrasound with f number of 1 and aperture size of 1 mm. The 150 MHz transducer can focus within 10 micrometers in diameter and directly stimulate cells by disturbing cell plasma membranes without microbubbles. High frequency stimulation was used to introduce calcium ions into cytoplasm of cells. Results demonstrate calcium transport between cells, visualized by FRET calcium biosensor after only one cell was stimulated by the developed high frequency ultrasonic transducer. 
    more » « less
  4. Abstract ObjectivesIncreased use of three‐dimensional (3D) imaging data has led to a need for methods capable of capturing rich shape descriptions. Semi‐landmarks have been demonstrated to increase shape information but placement in 3D can be time consuming, computationally expensive, or may introduce artifacts. This study implements and compares three strategies to more densely sample a 3D image surface. Materials and methodsThree dense sampling strategies: patch, patch‐thin‐plate spline (TPS), and pseudo‐landmark sampling, are implemented to analyze skulls from three species of great apes. To evaluate the shape information added by each strategy, the semi or pseudo‐landmarks are used to estimate a transform between an individual and the population average template. The average mean root squared error between the transformed mesh and the template is used to quantify the success of the transform. ResultsThe landmark sets generated by each method result in estimates of the template that on average were comparable or exceeded the accuracy of using manual landmarks alone. The patch method demonstrates the most sensitivity to noise and missing data, resulting in outliers with large deviations in the mean shape estimates. Patch‐TPS and pseudo‐landmarking provide more robust performance in the presence of noise and variability in the dataset. ConclusionsEach landmarking strategy was capable of producing shape estimations of the population average templates that were generally comparable to manual landmarks alone while greatly increasing the density of the shape information. This study highlights the potential trade‐offs between correspondence of the semi‐landmark points, consistent point spacing, sample coverage, repeatability, and computational time. 
    more » « less
  5. IntroductionTypical adolescent neurodevelopment is marked by decreases in grey matter (GM) volume, increases in myelination, measured by fractional anisotropy (FA), and improvement in cognitive performance. MethodsTo understand how epigenetic changes, methylation (DNAm) in particular, may be involved during this phase of development, we studied cognitive assessments, DNAm from saliva, and neuroimaging data from a longitudinal cohort of normally developing adolescents, aged nine to fourteen. We extracted networks of methylation with patterns of correlated change using a weighted gene correlation network analysis (WCGNA). Modules from these analyses, consisting of co-methylation networks, were then used in multivariate analyses with GM, FA, and cognitive measures to assess the nature of their relationships with cognitive improvement and brain development in adolescence. ResultsThis longitudinal exploration of co-methylated networks revealed an increase in correlated epigenetic changes as subjects progressed into adolescence. Co-methylation networks enriched for pathways involved in neuronal systems, potassium channels, neurexins and neuroligins were both conserved across time as well as associated with maturation patterns in GM, FA, and cognition. DiscussionOur research shows that correlated changes in the DNAm of genes in neuronal processes involved in adolescent brain development that were both conserved across time and related to typical cognitive and brain maturation, revealing possible epigenetic mechanisms driving this stage of development. 
    more » « less