skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Isochronic development of cortical synapses in primates and mice
Abstract The neotenous, or delayed, development of primate neurons, particularly human ones, is thought to underlie primate-specific abilities like cognition. We tested whether synaptic development follows suit—would synapses, in absolute time, develop slower in longer-lived, highly cognitive species like non-human primates than in shorter-lived species with less human-like cognitive abilities, e.g., the mouse? Instead, we find that excitatory and inhibitory synapses in the maleMus musculus(mouse) andRhesus macaque(primate) cortex form at similar rates, at similar times after birth. Primate excitatory and inhibitory synapses and mouse excitatory synapses also prune in such an isochronic fashion. Mouse inhibitory synapses are the lone exception, which are not pruned and instead continuously added throughout life. The monotony of synaptic development clocks across species with disparate lifespans, experiences, and cognitive abilities argues that such programs are likely orchestrated by genetic events rather than experience.  more » « less
Award ID(s):
2014862
PAR ID:
10477768
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive breakdown of neural circuits which leads to motoneuron death. Earlier work from our lab showed that dysregulation of inhibitory V1 interneurons precedes the degeneration of excitatory V2a interneurons and motoneurons and that stabilizing V1–motoneuron connections improved motor function and saved motoneurons in the SOD1G93AALS mouse model. However, the optimal timing for this intervention remains unclear. To address this, we developed a spiking neural network model of spinal locomotor circuits to simulate healthy and ALS-like conditions. By modeling changes in network connectivity and synaptic dynamics, we predict that V1 dysregulation induces hyperexcitation in motoneurons which is preferentially observed in flexor motoneurons leading to the disruption of flexor-extensor coordination, and potentially contributing to selective vulnerability of flexor motoneurons. Stabilizing V1 synapses preserved motor output even after motoneuron loss, suggesting that therapeutic benefit is possible into symptomatic stages. However, model predictions also highlighted that after sustained synaptic loss and the development of slower synaptic dynamics within the network, synaptic stabilization leads to maladaptive extensor-biased activity, suggesting that excitatory/inhibitory balance impacts treatment effectiveness. Finally, the model indicated that V1 stabilization could lead to rescue of the V2a excitatory interneurons, a finding that we were able to confirm experimentally in the SOD1G93AALS mouse model. By exploring different scenarios of synaptic loss and cell dysregulation during synaptic stabilization, our models provide a framework for predicting candidate time windows for spinal circuit interventions, which may guide future preclinical investigations. 
    more » « less
  2. Cortical function relies on the balanced activation of excitatory and inhibitory neurons. However, little is known about the organization and dynamics of shaft excitatory synapses onto cortical inhibitory interneu- rons. Here, we use the excitatory postsynaptic marker PSD-95, fluorescently labeled at endogenous levels, as a proxy for excitatory synapses onto layer 2/3 pyramidal neurons and parvalbumin-positive (PV+) interneu- rons in the barrel cortex of adult mice. Longitudinal in vivo imaging under baseline conditions reveals that, although synaptic weights in both neuronal types are log-normally distributed, synapses onto PV+ neurons are less heterogeneous and more stable. Markov model analyses suggest that the synaptic weight distribu- tion is set intrinsically by ongoing cell-type-specific dynamics, and substantial changes are due to accumu- lated gradual changes. Synaptic weight dynamics are multiplicative, i.e., changes scale with weights, although PV+ synapses also exhibit an additive component. These results reveal that cell-type-specific pro- cesses govern cortical synaptic strengths and dynamics. 
    more » « less
  3. Mammalian cortex features a vast diversity of neuronal cell types, each with characteristic anatomical, molecular and functional properties. Synaptic connectivity powerfully shapes how each cell type participates in the cortical circuit, but mapping connectivity rules at the resolution of distinct cell types remains difficult. Here, we used millimeter-scale volumetric electron microscopy1to investigate the connectivity of all inhibitory neurons across a densely-segmented neuronal population of 1352 cells spanning all layers of mouse visual cortex, producing a wiring diagram of inhibitory connections with more than 70,000 synapses. Taking a data-driven approach inspired by classical neuroanatomy, we classified inhibitory neurons based on the relative targeting of dendritic compartments and other inhibitory cells and developed a novel classification of excitatory neurons based on the morphological and synaptic input properties. The synaptic connectivity between inhibitory cells revealed a novel class of disinhibitory specialist targeting basket cells, in addition to familiar subclasses. Analysis of the inhibitory connectivity onto excitatory neurons found widespread specificity, with many interneurons exhibiting differential targeting of certain subpopulations spatially intermingled with other potential targets. Inhibitory targeting was organized into “motif groups,” diverse sets of cells that collectively target both perisomatic and dendritic compartments of the same excitatory targets. Collectively, our analysis identified new organizing principles for cortical inhibition and will serve as a foundation for linking modern multimodal neuronal atlases with the cortical wiring diagram. 
    more » « less
  4. INTRODUCTION The analysis of the human brain is a central goal of neuroscience, but for methodological reasons, research has focused on model organisms, the mouse in particular. Because substantial homology was found at the level of ion channels, transcriptional programs, and basic neuronal types, a strong similarity of neuronal circuits across species has also been assumed. However, a rigorous test of the configuration of local neuronal circuitry in mouse versus human—in particular, in the gray matter of the cerebral cortex—is missing. The about 1000-fold increase in number of neurons is the most obvious evolutionary change of neuronal network properties from mouse to human. Whether the structure of the local cortical circuitry has changed as well is, however, unclear. Recent data from transcriptomic analyses has indicated an increase in the proportion of inhibitory interneurons from mouse to human. But what the effect of such a change is on the circuit configurations found in the human cerebral cortex is not known. This is, however, of particular interest also to the study of neuropsychiatric disorders because in these, the alteration of inhibitory-to-excitatory synaptic balance has been identified as one possible mechanistic underpinning. RATIONALE We used recent methodological improvements in connectomics to acquire data from one macaque and two human individuals, using biopsies of the temporal, parietal, and frontal cortex. Human tissue was obtained from neurosurgical interventions related to tumor removal, in which access path tissue was harvested that was not primarily affected by the underlying disease. A key concern in the analysis of human patient tissue has been the relation to epilepsy surgery, when the underlying disease has required often year-long treatment with pharmaceuticals, plausibly altering synaptic connectivity. Therefore, the analysis of nonepileptic surgery tissue seemed of particular importance. We also included data from one macaque individual, who was not known to have any brain-related pathology. RESULTS We acquired three-dimensional electron microscopy data from temporal and frontal cortex of human and temporal and parietal cortex of macaque. From these, we obtained connectomic reconstructions and compared these with five connectomes from mouse cortex. On the basis of these data, we were able to determine the effect of the about 2.5-fold expansion of the interneuron pool in macaque and human cortex compared with that of mouse. Contrary to expectation, the inhibitory-to-excitatory synaptic balance on pyramidal neurons in macaque and human cortex was not substantially altered. Rather, the interneuron pool was selectively expanded for bipolar-type interneurons, which prefer the innervation of other interneurons, and which further increased their preference for interneuron innervation from mouse to human. These changes were each multifold, yielding in effect an about 10-fold expanded interneuron-to-interneuron network in the human cortex that is only sparsely present in mouse. The total amount of synaptic input to pyramidal neurons, however, did not change according to the threefold thickening of the cortex; rather, a modest increase from about 12,000 synaptic inputs in mouse to about 15,000 in human was found. CONCLUSION The principal cells of the cerebral cortex, pyramidal neurons, maintain almost constant inhibitory-to-excitatory input balance and total synaptic input across 100 million years of evolutionary divergence, which is particularly noteworthy with the concomitant 1000-fold expansion of the neuronal network size and the 2.5-fold increase of inhibitory interneurons from mouse to human. Rather, the key network change from mouse to human is an expansion of almost an order of magnitude of an interneuron-to-interneuron network that is virtually absent in mouse but constitutes a substantial part of the human cortical network. Whether this new network is primarily created through the expansion of existing neuronal types, or is related to the creation of new interneuron subtypes, requires further study. The discovery of this network component in human cortex encourages detailed analysis of its function in health and disease. Connectomic screening across mammalian species: Comparison of five mouse, two macaque, and two human connectomic datasets from the cerebral cortex. ( A ) Automated reconstructions of all neurons with their cell bodies in the volume shown, using random colors. The analyzed connectomes comprised a total of ~1.6 million synapses. Arrows indicate evolutionary divergence: the last common ancestor between human and mouse, approximately 100 million years ago, and the last common ancestor between human and macaque, about 20 million years ago. ( B ) Illustration of the about 10-fold expansion of the interneuron-to-interneuron network from mouse to human. 
    more » « less
  5. Berry, Hugues (Ed.)
    Recent experiments in the developing mammalian visual cortex have revealed that gap junctions couple excitatory cells and potentially influence the formation of chemical synapses. In particular, cells that were coupled by a gap junction during development tend to share an orientation preference and are preferentially coupled by a chemical synapse in the adult cortex, a property that is diminished when gap junctions are blocked. In this work, we construct a simplified model of the developing mouse visual cortex including spike-timing-dependent plasticity of both the feedforward synaptic inputs and recurrent cortical synapses. We use this model to show that synchrony among gap-junction-coupled cells underlies their preference to form strong recurrent synapses and develop similar orientation preference; this effect decreases with an increase in coupling density. Additionally, we demonstrate that gap-junction coupling works, together with the relative timing of synaptic development of the feedforward and recurrent synapses, to determine the resulting cortical map of orientation preference. 
    more » « less