skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: First-passage-time statistics of growing microbial populations carry an imprint of initial conditions
Abstract In exponential population growth, variability in the timing of individual division events and environmental factors (including stochastic inoculation) compound to produce variable growth trajectories. In several stochastic models of exponential growth we show power-law relationships that relate variability in the time required to reach a threshold population size to growth rate and inoculum size. Population-growth experiments inE. coliandS. aureuswith inoculum sizes ranging between 1 and 100 are consistent with these relationships. We quantify how noise accumulates over time, finding that it encodes—and can be used to deduce—information about the early growth rate of a population.  more » « less
Award ID(s):
2032985 2144342
PAR ID:
10477784
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nonhuman primates are an essential part of tropical biodiversity and play key roles in many ecosystem functions, processes, and services. However, the impact of climate variability on nonhuman primates, whether anthropogenic or otherwise, remains poorly understood. In this study, we utilized age‐structured matrix population models to assess the population viability and demographic variability of a population of geladas (Theropithecus gelada) in the Simien Mountains, Ethiopia with the aim of revealing any underlying climatic influences. Using data from 2008 to 2019 we calculated annual, time‐averaged, and stochastic population growth rates (λ) and investigated relationships between vital rate variability and monthly cumulative rainfall and mean temperature. Our results showed that under the prevailing environmental conditions, the population will increase (λs = 1.021). Significant effects from rainfall and/or temperature variability were widely detected across vital rates; only the first year of infant survival and the individual years of juvenile survival were definitively unaffected. Generally, the higher temperature in the hot‐dry season led to lower survival and higher fecundity, while higher rainfall in the hot‐dry season led to increased survival and fecundity. Overall, these results provide evidence of greater effects of climate variability across a wider range of vital rates than those found in previous primate demography studies. This highlights that although primates have often shown substantial resilience to the direct effects of climate change, their vulnerability may vary with habitat type and across populations. 
    more » « less
  2. In isogenic microbial populations, phenotypic variability is generated by a combination of stochastic mechanisms, such as gene expression, and deterministic factors, such as asymmetric segregation of cell volume. Here we address the question: how does phenotypic variability of a microbial population affect its fitness? While this question has previously been studied for exponentially growing populations, the situation when the population size is kept fixed has received much less attention, despite its relevance to many natural scenarios. We show that the outcome of competition between multiple microbial species can be determined from the distribution of phenotypes in the culture using a generalization of the well-known Euler–Lotka equation, which relates the steady-state distribution of phenotypes to the population growth rate. We derive a generalization of the Euler–Lotka equation for finite cultures, which relates the distribution of phenotypes among cells in the culture to the exponential growth rate. Our analysis reveals that in order to predict fitness from phenotypes, it is important to understand how distributions of phenotypes obtained from different subsets of the genealogical history of a population are related. To this end, we derive a mapping between the various ways of sampling phenotypes in a finite population and show how to obtain the equivalent distributions from an exponentially growing culture. Finally, we use this mapping to show that species with higher growth rates in exponential growth conditions will have a competitive advantage in the finite culture. 
    more » « less
  3. Cells must couple cell-cycle progress to their growth rate to restrict the spread of cell sizes present throughout a population. Linear, rather than exponential, accumulation of Whi5, was proposed to provide this coordination by causing a higher Whi5 concentration in cells born at a smaller size. We tested this model using the inducibleGAL1promoter to make the Whi5 concentration independent of cell size. At an expression level that equalizes the mean cell size with that of wild-type cells, the size distributions of cells with galactose-induced Whi5 expression and wild-type cells are indistinguishable. Fluorescence microscopy confirms that the endogenous andGAL1promoters produce different relationships between Whi5 concentration and cell volume without diminishing size control in the G1 phase. We also expressed Cln3 from the GAL1 promoter, finding that the spread in cell sizes for an asynchronous population is unaffected by this perturbation. Our findings indicate that size control in budding yeast does not fundamentally originate from the linear accumulation of Whi5, contradicting a previous claim and demonstrating the need for further models of cell-cycle regulation to explain how cell size controls passage through Start. 
    more » « less
  4. Abstract PremiseUnderstanding how population dynamics vary in space and time is critical for understanding the basic life history and conservation needs of a species, especially for narrow endemic species whose populations are often in similar environments and therefore at increased risk of extinction under climate change. Here, we investigated the spatial and temporal variation in population dynamics ofRanunculus austro‐oreganus, a perennial buttercup endemic to fragmented prairie habitat in one county in southern Oregon. MethodsWe performed demographic surveys of three populations ofR. austro‐oreganusover 4 years (2015–2018). We used size‐structured population models and life table response experiments to investigate vital rates driving spatiotemporal variation in population growth. ResultsOverall,R. austro‐oreganushad positive or stable stochastic population growth rates, though individual vital rates and overall population growth varied substantially among sites and years. All populations had their greatest growth in the same year, suggesting potential synchrony associated with climate conditions. Differences in survival contributed most to spatial variation in population growth, while differences in reproduction contributed most to temporal variation in population growth. ConclusionsPopulations of this extremely narrow endemic appear stable, with positive growth during our study window. These results suggest that populations ofR. austro‐oreganusare able to persist if their habitat is not eliminated by land‐use change. Nonetheless, its narrow distribution and synchronous population dynamics suggest the need for continued monitoring, particularly with ongoing habitat loss and climate change. 
    more » « less
  5. Bacterial growth rate, commonly reported in terms of doubling time, is frequently determined by one of two techniques: either by measuring optical absorption of a growing culture or by taking samples at different times during their growth phase, diluting them, spreading them on agar plates, incubating them, and counting the colonies that form. Both techniques require measurements of multiple repeats, as well careful assessment of reproducibility and consistency. Existing literature using either technique gives a wide range of growth rate values for even the most extensively studied species of bacteria, such asEscherichia coli,Pseudomonas aeruginosa, and  Staphylococcus aureus. This work aims to apply several methods to reliably determine the growth rate of a recently identified species ofEnterobacteriaceae, calledEnterobacter sp. SM3, and to compare that rate with that of a well-known wildtypeE. colistrain KP437. ResultsWe extend conventional optical density (OD) measurements to determine the growth rate ofEnterobacter sp. SM3. To assess the reliability of this technique, we compare growth rates obtained by fitting the OD data to exponential growth, applying a relative density method, and measuring shifts in OD curves following set factors of dilution. The main source of error in applying the OD technique is due to the reliance on an exponential growth phase with a short span. With proper choice of parameter range, however, we show that these three methods yield consistent results. We also measured theSM3division rate by counting colony-forming units (CFU) versus time, yielding results consistent with the OD measurements. In lysogeny broth at 37oC, SM3 divides every 21 ± 3 min, notably faster than the RP437 strain ofE. coli, which divides every 29 ± 2 min. ConclusionThe main conclusion of this report is that conventional optical density (OD) measurements and the colony-forming units (CFU) method can yield consistent values of bacterial growth rate. However, to ensure the reproducibility and reliability of the measured growth rate of each bacterial strain, different methods ought to be applied in close comparison. The effort of checking for consistency among multiple techniques, as we have done in this study, is necessary to avoid reporting variable values of doubling time for particular species or strains of bacteria, as seen in the literature. 
    more » « less