skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2032985

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In exponential population growth, variability in the timing of individual division events and environmental factors (including stochastic inoculation) compound to produce variable growth trajectories. In several stochastic models of exponential growth we show power-law relationships that relate variability in the time required to reach a threshold population size to growth rate and inoculum size. Population-growth experiments inE. coliandS. aureuswith inoculum sizes ranging between 1 and 100 are consistent with these relationships. We quantify how noise accumulates over time, finding that it encodes—and can be used to deduce—information about the early growth rate of a population. 
    more » « less
  2. Abstract Antibiotic treatment significantly impacts the human gut microbiota, but quantitative understanding of how antibiotics affect community diversity is lacking. Here, we build on classical ecological models of resource competition to investigate community responses to species-specific death rates, as induced by antibiotic activity or other growth-inhibiting factors such as bacteriophages. Our analyses highlight the complex dependence of species coexistence that can arise from the interplay of resource competition and antibiotic activity, independent of other biological mechanisms. In particular, we identify resource competition structures that cause richness to depend on the order of sequential application of antibiotics (non-transitivity), and the emergence of synergistic and antagonistic effects under simultaneous application of multiple antibiotics (non-additivity). These complex behaviors can be prevalent, especially when generalist consumers are targeted. Communities can be prone to either synergism or antagonism, but typically not both, and antagonism is more common. Furthermore, we identify a striking overlap in competition structures that lead to non-transitivity during antibiotic sequences and those that lead to non-additivity during antibiotic combination. In sum, our results establish a broadly applicable framework for predicting microbial community dynamics under deleterious perturbations. 
    more » « less
  3. Abstract Non-mammalian model organisms have been essential for our understanding of the mechanisms that control development, disease, and physiology, but they are underutilized in pharmacological and toxicological phenotypic screening assays due to their low throughput in comparison with cell-based screens. To increase the utility of using Drosophila melanogaster in screening, we designed the Whole Animal Feeding FLat (WAFFL), a novel, flexible, and complete system for feeding, monitoring, and assaying flies in a high-throughput format. Our 3D printed system is compatible with inexpensive and readily available, commercial 96-well plate consumables and equipment. Experimenters can change the diet at will during the experiment and video record for behavior analysis, enabling precise dosing, measurement of feeding, and analysis of behavior in a 96-well plate format. 
    more » « less
  4. Bifidobacteria represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest in bifidobacteria as a live biotic therapy, our understanding of colonization, host-microbe interactions, and the health-promoting effects of bifidobacteria is limited. To address these major knowledge gaps, we used a large-scale genetic approach to create a mutant fitness compendium in Bifidobacterium breve. First, we generated a high-density randomly barcoded transposon insertion pool and used it to determine fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. Second, to enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1,462 genes. We leveraged these tools to reveal community- and diet-specific requirements for colonization and to connect the production of immunomodulatory molecules to growth benefits. These resources will catalyze future investigations of this important beneficial microbe. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  5. Salmonella enterica serovar Typhimurium must adapt to rapid environmental shifts, including those encountered upon entry and during replication to survive within macrophages during pathogenesis. Despite extensive RNA-seq-based investigations, questions remain regarding the range, timing and magnitude of response dynamics. Here we constructed a comprehensive GFP-reporter strain library representing 2,901 computationally identified Salmonella promoter regions to study time-resolved Salmonella transcriptional responses. Promoter activity was measured during in vitro growth and during intracellular infection of RAW 264.7 macrophages. Using bulk measurements and single-cell imaging, we uncovered condition-specific transcriptional regulation and population-level heterogeneity in SPI2-related promoter activity. We also discovered previously unidentified transcriptional activity from 234 promoters. These analyses revealed metabolic shifts including requirements for mntS expression to support manganese homeostasis and expression of Entner–Doudoroff pathway-associated genes to support growth within macrophages. Our library and datasets, made available through the online tool SalComKinetics, provide resources for systems-level interrogation of Salmonella transcriptional dynamics. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  6. The long-term success of introduced populations depends on both their initial size and ability to compete against existing residents, but it remains unclear how these factors collectively shape colonization dynamics. Here, we investigate how initial population (propagule) size shapes the outcome of community coalescence by systematically mixing eight pairs of in vitro microbial communities at ratios that vary over six orders of magnitude, and we compare our results to neutral ecological theory. Although the composition of the resulting cocultures deviated substantially from neutral expectations, each coculture contained species whose relative abundance depended on propagule size even after ~40 generations of growth. Using a consumer–resource model, we show that this dose-dependent colonization can arise when resident and introduced species have high niche overlap and consume shared resources at similar rates. Strain isolates displayed longer-lasting dose dependence when introduced into diverse communities than in pairwise cocultures, consistent with our model’s prediction that propagule size should have larger, more persistent effects in diverse communities. Our model also successfully predicted that species with similar resource-utilization profiles, as inferred from growth in spent media and untargeted metabolomics, would show stronger dose dependence in pairwise coculture. This work demonstrates that transient, dose-dependent colonization dynamics can emerge from resource competition and exert long-term effects on the outcomes of community coalescence. 
    more » « less
    Free, publicly-accessible full text available March 18, 2026
  7. Temperature is a key determinant of microbial behaviour and survival in the environment and within hosts. At intermediate temperatures, growth rate varies according to the Arrhenius law of thermodynamics, which describes the effect of temperature on the rate of a chemical reaction. However, the mechanistic basis for this behaviour remains unclear. Here we use single-cell microscopy to show that Escherichia coli exhibits a gradual response to temperature upshifts with a timescale of ~1.5 doublings at the higher temperature. The response was largely independent of initial or final temperature and nutrient source. Proteomic and genomic approaches demonstrated that adaptation to temperature is independent of transcriptional, translational or membrane fluidity changes. Instead, an autocatalytic enzyme network model incorporating temperature-sensitive Michaelis–Menten kinetics recapitulates all temperature-shift dynamics through metabolome rearrangement, resulting in a transient temperature memory. The model successfully predicts alterations in the temperature response across nutrient conditions, diverse E. coli strains from hosts with different body temperatures, soil-dwelling Bacillus subtilis and fission yeast. In sum, our model provides a mechanistic framework for Arrhenius-dependent growth. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  8. Animals selectively acquire specific symbiotic gut bacteria from their environments that aid host fitness. To colonize, a symbiont must locate its niche and sustain growth within the gut. Adhesins are bacterial cell surface proteins that facilitate attachment to host tissues and are often virulence factors for opportunistic pathogens. However, the attachments are often transient and nonspecific, and additional mechanisms are required to sustain infection. In this work, we use live imaging of individual symbiotic bacterial cells colonizing the gut of livingDrosophila melanogasterto show thatLactiplantibacillus plantarumspecifically recognizes the fruit fly foregut as a distinct physical niche.L. plantarumestablishes stably within its niche through host-specific adhesins encoded by genes carried on a colonization island. The adhesin binding domains are conserved throughout the Lactobacillales, and the island also encodes a secretion system widely conserved among commensal and pathogenic bacteria. 
    more » « less
    Free, publicly-accessible full text available December 6, 2025
  9. The animal foregut is the first tissue to encounter ingested food, bacteria, and viruses. We characterized the adult Drosophila foregut using transcriptomics to better understand how it triages consumed items for digestion or immune response and manages resources. Cell types were assigned and validated using GFP-tagged and Gal4 reporter lines. Foregut-associated neuroendocrine cells play a major integrative role by coordinating gut activity with nutrition, the microbiome, and circadian cycles; some express clock genes. Multiple epithelial cell types comprise the proventriculus, the central foregut organ that secretes the peritrophic matrix (PM) lining the gut. Analyzing cell types synthesizing individual PM layers revealed abundant mucin production close to enterocytes, similar to the mammalian intestinal mucosa. The esophagus and salivary gland express secreted proteins likely to line the esophageal surface, some of which may generate a foregut commensal niche housing specific gut microbiome species. Overall, our results imply that the foregut coordinates dietary sensing, hormonal regulation, and immunity in a manner that has been conserved during animal evolution. 
    more » « less
  10. A longstanding goal of biology is to identify the key genes and species that critically impact evolution, ecology, and health. Network analysis has revealed keystone species that regulate ecosystems and master regulators that regulate cellular genetic networks. Yet these studies have focused on pairwise biological interactions, which can be affected by the context of genetic background and other species present, generating higher-order interactions. The important regulators of higher-order interactions are unstudied. To address this, we applied a high-dimensional geometry approach that quantifies epistasis in a fitness landscape to ask how individual genes and species influence the interactions in the rest of the biological network. We then generated and also reanalyzed 5-dimensional datasets (two genetic, two microbiome). We identified key genes (e.g., therbslocus andpykF) and species (e.g.,Lactobacilli) that control the interactions of many other genes and species. These higher-order master regulators can induce or suppress evolutionary and ecological diversification by controlling the topography of the fitness landscape. Thus, we provide a method and mathematical justification for exploration of biological networks in higher dimensions. 
    more » « less