skip to main content


Title: The ALMA REBELS survey: obscured star formation in massive Lyman-break galaxies at z = 4–8 revealed by the IRX–β and M ⋆ relations
ABSTRACT

We investigate the degree of dust obscured star formation in 49 massive (log10(M⋆/M⊙) > 9) Lyman-break galaxies (LBGs) at z = 6.5–8 observed as part of the Atacama Large Millimeter/submillimeter Array (ALMA) Reionization Era Bright Emission Line Survey (REBELS) large program. By creating deep stacks of the photometric data and the REBELS ALMA measurements we determine the average rest-frame ultraviolet (UV), optical, and far-infrared (FIR) properties which reveal a significant fraction (fobs = 0.4–0.7) of obscured star formation, consistent with previous studies. From measurements of the rest-frame UV slope, we find that the brightest LBGs at these redshifts show bluer (β ≃ −2.2) colours than expected from an extrapolation of the colour–magnitude relation found at fainter magnitudes. Assuming a modified blackbody spectral energy distribution (SED) in the FIR (with dust temperature of $T_{\rm d} = 46\, {\rm K}$ and βd = 2.0), we find that the REBELS sources are in agreement with the local ‘Calzetti-like’ starburst Infrared-excess (IRX)–β relation. By re-analysing the data available for 108 galaxies at z ≃ 4–6 from the ALMA Large Program to Investigate C+ at Early Times (ALPINE) using a consistent methodology and assumed FIR SED, we show that from z ≃ 4–8, massive galaxies selected in the rest-frame UV have no appreciable evolution in their derived IRX–β relation. When comparing the IRX–M⋆ relation derived from the combined ALPINE and REBELS sample to relations established at z < 4, we find a deficit in the IRX, indicating that at z > 4 the proportion of obscured star formation is lower by a factor of ≳ 3 at a given a M⋆. Our IRX–β results are in good agreement with the high-redshift predictions of simulations and semi-analytic models for z ≃ 7 galaxies with similar stellar masses and star formation rates.

 
more » « less
NSF-PAR ID:
10477802
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 5808-5828
Size(s):
["p. 5808-5828"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Star formation rate (SFR) measurements at z  > 4 have relied mostly on the rest-frame far-ultraviolet (FUV) observations. The corrections for dust attenuation based on the IRX- β relation are highly uncertain and are still debated in the literature. Hence, rest-frame far-infrared (FIR) observations are necessary to constrain the dust-obscured component of the SFR. In this paper, we exploit the rest-frame FIR continuum observations collected by the ALMA Large Program to INvestigate [CII] at Early times (ALPINE) to directly constrain the obscured SFR in galaxies at 4.4 <  z  < 5.9. We used stacks of continuum images to measure average infrared luminosities taking both detected and undetected sources into account. Based on these measurements, we measured the position of the main sequence of star-forming galaxies and the specific SFR (sSFR) at z  ∼ 4.5 and z  ∼ 5.5. We find that the main sequence and sSFR do not significantly evolve between z  ∼ 4.5 and z  ∼ 5.5, as opposed to lower redshifts. We developed a method to derive the obscured SFR density (SFRD) using the stellar masses or FUV-magnitudes as a proxy of FIR fluxes measured on the stacks and combining them with the galaxy stellar mass functions and FUV luminosity functions from the literature. We obtain consistent results independent of the chosen proxy. We find that the obscured fraction of SFRD is decreasing with increasing redshift, but even at z  ∼ 5.5 it constitutes around 61% of the total SFRD. 
    more » « less
  2. ABSTRACT

    We present specific star formation rates (sSFRs) for 40 ultraviolet (UV)-bright galaxies at z ∼ 7–8 observed as part of the Reionization Era Bright Emission Line Survey (REBELS) Atacama Large Millimeter/submillimeter Array (ALMA) large programme. The sSFRs are derived using improved star formation rate (SFR) calibrations and spectral energy distribution (SED)-based stellar masses, made possible by measurements of far-infrared (FIR) continuum emission and [C ii]-based spectroscopic redshifts. The median sSFR of the sample is $18_{-5}^{+7}$ Gyr−1, significantly larger than literature measurements lacking constraints in the FIR, reflecting the larger obscured SFRs derived from the dust continuum relative to that implied by the UV+optical SED. We suggest that such differences may reflect spatial variations in dust across these luminous galaxies, with the component dominating the FIR distinct from that dominating the UV. We demonstrate that the inferred stellar masses (and hence sSFRs) are strongly dependent on the assumed star formation history in reionization-era galaxies. When large sSFR galaxies (a population that is common at z > 6) are modelled with non-parametric star formation histories, the derived stellar masses can increase by an order of magnitude relative to constant star formation models, owing to the presence of a significant old stellar population that is outshined by the recent burst. The [C ii] line widths in the largest sSFR systems are often very broad, suggesting dynamical masses capable of accommodating an old stellar population suggested by non-parametric models. Regardless of these systematic uncertainties among derived parameters, we find that sSFRs increase rapidly toward higher redshifts for massive galaxies (9.6 < log (M*/M⊙) < 9.8), evolving as (1 + z)1.7 ± 0.3, broadly consistent with expectations from the evolving baryon accretion rates.

     
    more » « less
  3. ABSTRACT

    We present an analysis of the dust attenuation of star-forming galaxies at z = 2.5–4.0 through the relationship between the UV spectral slope (β), stellar mass (M*), and the infrared excess (IRX = LIR/LUV) based on far-infrared continuum observations from the Atacama Large Millimeter/sub-millimeter Array (ALMA). Our study exploits the full ALMA archive over the COSMOS field processed by the A3COSMOS team, which includes an unprecedented sample of ∼1500 galaxies at z ∼ 3 as primary or secondary targets in ALMA band 6 or 7 observations with a median continuum sensitivity of 126 $\rm {\mu Jy\, beam}^{-1}$ (1σ). The detection rate is highly mass dependent, decreasing drastically below log (M*/M⊙) = 10.5. The detected galaxies show that the IRX–β relationship of massive (log M*/M⊙ > 10) main-sequence galaxies at z = 2.5–4.0 is consistent with that of local galaxies, while starbursts are generally offset by $\sim 0.5\, {\rm dex}$ to larger IRX values. At the low-mass end, we derive upper limits on the infrared luminosities through stacking of the ALMA data. The combined IRX–M* relation at $\rm {log\, ({\it M}_{\ast }/\mathrm{M}_{\odot })\gt 9}$ exhibits a significantly steeper slope than reported in previous studies at similar redshifts, implying little dust obscuration at log M*/M⊙ < 10. However, our results are consistent with earlier measurements at z ∼ 5.5, indicating a potential redshift evolution between z ∼ 2 and z ∼ 6. Deeper observations targeting low-mass galaxies will be required to confirm this finding.

     
    more » « less
  4. Abstract We make use of sensitive (9.3 μ Jy beam −1 rms) 1.2 mm continuum observations from the Atacama Large Millimeter/submillimeter Array (ALMA) Spectroscopic Survey in the Hubble Ultra-Deep Field (ASPECS) large program to probe dust-enshrouded star formation from 1362 Lyman-break galaxies spanning the redshift range z  = 1.5–10 (to ∼7–28 M ⊙ yr −1 at 4 σ over the entire range). We find that the fraction of ALMA-detected galaxies in our z  = 1.5–10 samples increases steeply with stellar mass, with the detection fraction rising from 0% at 10 9.0 M ⊙ to % at >10 10 M ⊙ . Moreover, on stacking all 1253 low-mass (<10 9.25 M ⊙ ) galaxies over the ASPECS footprint, we find a mean continuum flux of −0.1 ± 0.4 μ Jy beam −1 , implying a hard upper limit on the obscured star formation rate of <0.6 M ⊙ yr −1 (4 σ ) in a typical low-mass galaxy. The correlation between the infrared excess (IRX) of UV-selected galaxies ( L IR / L UV ) and the UV-continuum slope is also seen in our ASPECS data and shows consistency with a Calzetti-like relation at > and an SMC-like relation at lower masses. Using stellar mass and β measurements for z  ∼ 2 galaxies over the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we derive a new empirical relation between β and stellar mass and then use this correlation to show that our IRX– β and IRX–stellar mass relations are consistent with each other. We then use these constraints to express the IRX as a bivariate function of β and stellar mass. Finally, we present updated estimates of star formation rate density determinations at z  > 3, leveraging present improvements in the measured IRX and recent probes of ultraluminous far-IR galaxies at z  > 2. 
    more » « less
  5. The ALMA-ALPINE [CII] survey is aimed at characterizing the properties of a sample of normal star-forming galaxies (SFGs). The ALMA Large Program to INvestigate (ALPINE) features 118 galaxies observed in the [CII]-158 μ m line and far infrared (FIR) continuum emission during the period of rapid mass assembly, right after the end of the HI reionization, at redshifts of 4 <   z  <  6. We present the survey science goals, the observational strategy, and the sample selection of the 118 galaxies observed with ALMA, with an average beam minor axis of about 0.85″, or ∼5 kpc at the median redshift of the survey. The properties of the sample are described, including spectroscopic redshifts derived from the UV-rest frame, stellar masses, and star-formation rates obtained from a spectral energy distribution (SED) fitting. The observed properties derived from the ALMA data are presented and discussed in terms of the overall detection rate in [CII] and FIR continuum, with the observed signal-to-noise distribution. The sample is representative of the SFG population in the main sequence at these redshifts. The overall detection rate in [CII] is 64% for a signal-to-noise ratio (S/N) threshold larger than 3.5 corresponding to a 95% purity (40% detection rate for S / N  >  5). Based on a visual inspection of the [CII] data cubes together with the large wealth of ancillary data, we find a surprisingly wide range of galaxy types, including 40% that are mergers, 20% extended and dispersion-dominated, 13% compact, and 11% rotating discs, with the remaining 16% too faint to be classified. This diversity indicates that a wide array of physical processes must be at work at this epoch, first and foremost, those of galaxy mergers. This paper sets a reference sample for the gas distribution in normal SFGs at 4 <   z  <  6, a key epoch in galaxy assembly, which is ideally suited for studies with future facilities, such as the James Webb Space Telescope (JWST) and the Extremely Large Telescopes (ELTs). 
    more » « less