skip to main content


Title: Complexity of frustration: A new source of non-local non-stabilizerness

We advance the characterization of complexity in quantum many-body systems by examiningWW-states embedded in a spin chain. Such states show an amount of non-stabilizerness or “magic”, measured as the Stabilizer Rényi Entropy, that grows logarithmically with the number of qubits/spins. We focus on systems whose Hamiltonian admits a classical point with extensive degeneracy. Near these points, a Clifford circuit can convert the ground state into aWW-state, while in the rest of the phase to which the classical point belongs, it is dressed with local quantum correlations. Topological frustrated quantum spin-chains host phases with the desired phenomenology, and we show that their ground state’s Stabilizer Rényi Entropy is the sum of that of theWW-states plus an extensive local contribution. Our work reveals thatWW-states/frustrated ground states display a non-local degree of complexity that can be harvested as a quantum resource and has no counterpart in GHZ states/non-frustrated systems.

 
more » « less
Award ID(s):
2014000
NSF-PAR ID:
10477840
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
SciPost
Date Published:
Journal Name:
SciPost Physics
Volume:
15
Issue:
4
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Variational approaches are among the most powerful techniques toapproximately solve quantum many-body problems. These encompass bothvariational states based on tensor or neural networks, and parameterizedquantum circuits in variational quantum eigensolvers. However,self-consistent evaluation of the quality of variational wavefunctionsis a notoriously hard task. Using a recently developed Hamiltonianreconstruction method, we propose a multi-faceted approach to evaluatingthe quality of neural-network based wavefunctions. Specifically, weconsider convolutional neural network (CNN) and restricted Boltzmannmachine (RBM) states trained on a square latticespin-1/21/2J_1\!-\!J_2J1J2Heisenberg model. We find that the reconstructed Hamiltonians aretypically less frustrated, and have easy-axis anisotropy near the highfrustration point. In addition, the reconstructed Hamiltonians suppressquantum fluctuations in the largeJ_2J2limit. Our results highlight the critical importance of thewavefunction’s symmetry. Moreover, the multi-faceted insight from theHamiltonian reconstruction reveals that a variational wave function canfail to capture the true ground state through suppression of quantumfluctuations.

     
    more » « less
  2. We present microscopic, multiple Landau level, (frustration-free and positive semi-definite) parent Hamiltonians whose ground states, realizing different quantum Hall fluids, are parton-like and whose excitations display either Abelian or non-Abelian braiding statistics. We prove ground state energy monotonicity theorems for systems with different particle numbers in multiple Landau levels, demonstrate S-duality in the case of toroidal geometry, and establish complete sets of zero modes of special Hamiltonians stabilizing parton-like states, specifically at filling factor\nu=2/3ν=2/3. The emergent Entangled Pauli Principle (EPP), introduced in [Phys. Rev. B 98, 161118(R) (2018)] and which defines the “DNA” of the quantum Hall fluid, is behind the exact determination of the topological characteristics of the fluid, including charge and braiding statistics of excitations, and effective edge theory descriptions. When the closed-shell condition is satisfied, the densest (i.e., the highest density and lowest total angular momentum) zero-energy mode is a unique parton state. We conjecture that parton-like states generally span the subspace of many-body wave functions with the two-bodyMM-clustering property within any given number of Landau levels, that is, wave functions withMMth-order coincidence plane zeroes and both holomorphic and anti-holomorphic dependence on variables. General arguments are supplemented by rigorous considerations for theM=3M=3case of fermions in four Landau levels. For this case, we establish that the zero mode counting can be done by enumerating certain patterns consistent with an underlying EPP. We apply the coherent state approach of [Phys. Rev. X 1, 021015 (2011)] to show that the elementary (localized) bulk excitations are Fibonacci anyons. This demonstrates that the DNA associated with fractional quantum Hall states encodes all universal properties. Specifically, for parton-like states, we establish a link with tensor network structures of finite bond dimension that emerge via root level entanglement.

     
    more » « less
  3. Abstract

    The functionality of atomic quantum emitters is intrinsically linked to their host lattice coordination. Structural distortions that spontaneously break the lattice symmetry strongly impact their optical emission properties and spin-photon interface. Here we report on the direct imaging of charge state-dependent symmetry breaking of two prototypical atomic quantum emitters in mono- and bilayer MoS2by scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). By changing the built-in substrate chemical potential, different charge states of sulfur vacancies (VacS) and substitutional rhenium dopants (ReMo) can be stabilized. Vac$${}_{{{{{{{{\rm{S}}}}}}}}}^{-1}$$S1as well as Re$${}_{{{{{{{{\rm{Mo}}}}}}}}}^{0}$$Mo0and Re$${}_{{{{{{{{\rm{Mo}}}}}}}}}^{-1}$$Mo1exhibit local lattice distortions and symmetry-broken defect orbitals attributed to a Jahn-Teller effect (JTE) and pseudo-JTE, respectively. By mapping the electronic and geometric structure of single point defects, we disentangle the effects of spatial averaging, charge multistability, configurational dynamics, and external perturbations that often mask the presence of local symmetry breaking.

     
    more » « less
  4. Abstract

    Two-dimensional electron systems subjected to high transverse magnetic fields can exhibit Fractional Quantum Hall Effects (FQHE). In the GaAs/AlGaAs 2D electron system, a double degeneracy of Landau levels due to electron-spin, is removed by a small Zeeman spin splitting,$$g \mu _B B$$gμBB, comparable to the correlation energy. Then, a change of the Zeeman splitting relative to the correlation energy can lead to a re-ordering between spin polarized, partially polarized, and unpolarized many body ground states at a constant filling factor. We show here that tuning the spin energy can produce fractionally quantized Hall effect transitions that include both a change in$$\nu$$νfor the$$R_{xx}$$Rxxminimum, e.g., from$$\nu = 11/7$$ν=11/7to$$\nu = 8/5$$ν=8/5, and a corresponding change in the$$R_{xy}$$Rxy, e.g., from$$R_{xy}/R_{K} = (11/7)^{-1}$$Rxy/RK=(11/7)-1to$$R_{xy}/R_{K} = (8/5)^{-1}$$Rxy/RK=(8/5)-1, with increasing tilt angle. Further, we exhibit a striking size dependence in the tilt angle interval for the vanishing of the$$\nu = 4/3$$ν=4/3and$$\nu = 7/5$$ν=7/5resistance minima, including “avoided crossing” type lineshape characteristics, and observable shifts of$$R_{xy}$$Rxyat the$$R_{xx}$$Rxxminima- the latter occurring for$$\nu = 4/3, 7/5$$ν=4/3,7/5and the 10/7. The results demonstrate both size dependence and the possibility, not just of competition between different spin polarized states at the same$$\nu$$νand$$R_{xy}$$Rxy, but also the tilt- or Zeeman-energy-dependent- crossover between distinct FQHE associated with different Hall resistances.

     
    more » « less
  5. Abstract

    Optically active spin defects in van der Waals materials are promising platforms for modern quantum technologies. Here we investigate the coherent dynamics of strongly interacting ensembles of negatively charged boron-vacancy ($${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$VB) centers in hexagonal boron nitride (hBN) with varying defect density. By employing advanced dynamical decoupling sequences to selectively isolate different dephasing sources, we observe more than 5-fold improvement in the measured coherence times across all hBN samples. Crucially, we identify that the many-body interaction within the$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$VBensemble plays a substantial role in the coherent dynamics, which is then used to directly estimate the concentration of$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$VB. We find that at high ion implantation dosage, only a small portion of the created boron vacancy defects are in the desired negatively charged state. Finally, we investigate the spin response of$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$VBto the local charged defects induced electric field signals, and estimate its ground state transverse electric field susceptibility. Our results provide new insights on the spin and charge properties of$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$VB, which are important for future use of defects in hBN as quantum sensors and simulators.

     
    more » « less