Researchers need to be able to find, access, and use data to participate in open science. To understand how users search for research data, we analyzed textual queries issued at a large social science data archive, the Inter-university Consortium for Political and Social Research (ICPSR). We collected unique user queries from 988,475 user search sessions over four years (2012-16). Overall, we found that only 30% of site visitors entered search terms into the ICPSR website. We analyzed search strategies within these sessions by extending existing dataset search taxonomies to classify a subset of the 1,554 most popular queries. We identified five categories of commonly-issued queries: keyword-based (e.g., date, place, topic); name (e.g., study, series); identifier (e.g., study, series); author (e.g., institutional, individual); and type (e.g., file, format). While the dominant search strategy used short keywords to explore topics, directed searches for known items using study and series names were also common. We further distinguished exploratory browsing from directed search queries based on their page views, refinements, search depth, duration, and length. Directed queries were longer (i.e., they had more words), while sessions with exploratory queries had more refinements and associated page views. By comparing search interactions at ICPSR to other natural language interactions in similar web search contexts, we conclude that dataset search at ICPSR is underutilized. We envision how alternative search paradigms, such as those enabled by recommender systems, can enhance dataset search. 
                        more » 
                        « less   
                    
                            
                            Direct, Orienting, and Scenic Paths: How Users Navigate Search in a Research Data Archive
                        
                    
    
            Social scientists increasingly share data so others can evaluate, replicate, and extend their research. To understand the process of data discovery as a precursor to data use, we study prospective users’ interactions with archived data. We gathered data for 98,000 user sessions initiated at a large social science data archive, the Inter-university Consortium for Political and Social Research (ICPSR). Our data reflect four years (2012-16) of users’ interactions with archival resources, including a data catalog, study-level metadata, variables, and publications that cite nearly 10,000 datasets. We constructed a network of user interactions linking website landing (e.g., site entrances) to exit pages, from which we identified three types of paths that users take through the research data archive: direct, orienting, and scenic. We also interpreted points of failure (e.g., drop-offs) and recurring behaviors (e.g., sensemaking) that support or impede data discovery along search paths. We articulate strategies that users adopt as they navigate data search and suggest ways to enhance the accessibility of data, metadata, and the systems that organize each. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2121789
- PAR ID:
- 10478069
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM SIGIR Conference On Human Information Interaction and Retrieval
- ISSN:
- 2771-3792
- ISBN:
- 9798400700354
- Page Range / eLocation ID:
- 128 to 136
- Format(s):
- Medium: X
- Location:
- Austin TX USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract SummarySequencing data resources have increased exponentially in recent years, as has interest in large-scale meta-analyses of integrated next-generation sequencing datasets. However, curation of integrated datasets that match a user’s particular research priorities is currently a time-intensive and imprecise task. MetaSeek is a sequencing data discovery tool that enables users to flexibly search and filter on any metadata field to quickly find the sequencing datasets that meet their needs. MetaSeek automatically scrapes metadata from all publicly available datasets in the Sequence Read Archive, cleans and parses messy, user-provided metadata into a structured, standard-compliant database and predicts missing fields where possible. MetaSeek provides a web-based graphical user interface and interactive visualization dashboard, as well as a programmatic API to rapidly search, filter, visualize, save, share and download matching sequencing metadata. Availability and implementationThe MetaSeek online interface is available at https://www.metaseek.cloud/. The MetaSeek database can also be accessed via API to programmatically search, filter and download all metadata. MetaSeek source code, metadata scrapers and documents are available at https://github.com/MetaSeek-Sequencing-Data-Discovery/metaseek/.more » « less
- 
            This dataset contains trace data describing user interactions with the Inter-university Consortium for Political and Social Research website (ICPSR). We gathered site usage data from Google Analytics. We focused our analysis on user sessions, which are groups of interactions with resources (e.g., website pages) and events initiated by users. ICPSR tracks a subset of user interactions (i.e., other than page views) through event triggers. We analyzed sequences of interactions with resources, including the ICPSR data catalog, variable index, data citations collected in the ICPSR Bibliography of Data-related Literature, and topical information about project archives. As part of our analysis, we calculated the total number of unique sessions and page views in the study period. Data in our study period fell between September 1, 2012, and 2016. ICPSR's website was updated and relaunched in September 2012 with new search functionality, including a Social Science Variables Database (SSVD) tool. ICPSR then reorganized its website and changed its analytics collection procedures in 2016, marking this as the cutoff date for our analysis. Data are relevant for two reasons. First, updates to the ICPSR website during the study period focused only on front-end design rather than the website's search functionality. Second, the core features of the website over the period we examined (e.g., faceted and variable search, standardized metadata, the use of controlled vocabularies, and restricted data applications) are shared with other major data archives, making it likely that the trends in user behavior we report are generalizable.more » « less
- 
            Abstract EarthCube Data Discovery Studio (DDStudio) is a crossdomain geoscience data discovery and exploration portal. It indexes over 1.65 million metadata records harvested from 40+ sources and utilizes a configurable metadata augmentation pipeline to enhance metadata content, using text analytics and an integrated geoscience ontology. Metadata enhancers add keywords with identifiers that map resources to science domains, geospatial features, measured variables, and other characteristics. The pipeline extracts spatial location and temporal references from metadata to generate structured spatial and temporal extents, maintaining provenance of each metadata enhancement, and allowing user validation. The semantically enhanced metadata records are accessible as standard ISO 19115/19139 XML documents via standard search interfaces. A search interface supports spatial, temporal, and text‐based search, as well as functionality for users to contribute, standardize, and update resource descriptions, and to organize search results into shareable collections. DDStudio bridges resource discovery and exploration by letting users launch Jupyter notebooks residing on several platforms for any discovered datasets or dataset collection. DDStudio demonstrates how linking search results from the catalog directly to software tools and environments reduces time to science in a series of examples from several geoscience domains. URL: datadiscoverystudio.orgmore » « less
- 
            Abstract Many theories of human information behavior (HIB) assume that information objects are in text document format. This paper argues four important HIB theories are insufficient for describing users' search strategies for data because of assumptions about the attributes of objects that users seek. We first review and compare four HIB theories: Bates'berrypicking, Marchionni'selectronic information search, Dervin'ssense‐making, and Meho and Tibbo'ssocial scientist information‐seeking. All four theories assume that information‐seekers search for text documents. Next, we compare these theories to search behavior by analyzing Google Analytics data from the Inter‐university Consortium for Political and Social Research (ICPSR). Users took direct, scenic, and orienting paths when searching for data. We also interviewed ICPSR users (n = 20), and they said they needed dataset documentation and contextual information to find data. However, Dervin'ssense‐makingalone cannot explain the information‐seeking behaviors that we observed. Instead, what mattered most were object attributes determined by the type of information that users sought (i.e., data, not documents). We conclude by suggesting an alternative frame for building user‐centered data discovery tools.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
