skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Preservice teachers’ focus in 360 videos of classroom instruction: Understanding the role of presence, ambisonic audio, and camera placement in immersive videos for future educators
Award ID(s):
1908159
NSF-PAR ID:
10478078
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Technology and Teacher Education
Date Published:
Journal Name:
Journal of technology and teacher education
ISSN:
1059-7069
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hwang, Gwo-Jen ; Xie, Haoran ; Wah, Benjamin ; Gasevic, Dragan (Ed.)
    Classroom videos are a common source of data for educational researchers studying classroom interactions as well as a resource for teacher education and professional development. Over the last several decades emerging technologies have been applied to classroom videos to record, transcribe, and analyze classroom interactions. With the rise of machine learning, we report on the development and validation of neural networks to classify instructional activities using video signals, without analyzing speech or audio features, from a large corpus of nearly 250 h of classroom videos from elementary mathematics and English language arts instruction. Results indicated that the neural networks performed fairly-well in detecting instructional activities, at diverse levels of complexity, as compared to human raters. For instance, one neural network achieved over 80% accuracy in detecting four common activity types: whole class activity, small group activity, individual activity, and transition. An issue that was not addressed in this study was whether the fine-grained and agnostic instructional activities detected by the neural networks could scale up to supply information about features of instructional quality. Future applications of these neural networks may enable more efficient cataloguing and analysis of classroom videos at scale and the generation of fine-grained data about the classroom environment to inform potential implications for teaching and learning. 
    more » « less
  2. null (Ed.)
    Precise measurement of physiological signals is critical for the effective monitoring of human vital signs. Recent developments in computer vision have demonstrated that signals such as pulse rate and respiration rate can be extracted from digital video of humans, increasing the possibility of contact-less monitoring. This paper presents a novel approach to obtaining physiological signals and classifying stress states from thermal video. The proposed network–”StressNet”–features a hybrid emission representation model that models the direct emission and absorption of heat by the skin and underlying blood vessels. This results in an information-rich feature representation of the face, which is used by spatio-temporal network for reconstructing the ISTI ( Initial Systolic Time Interval : a measure of change in cardiac sympathetic activity that is considered to be a quantitative index of stress in humans). The reconstructed ISTI signal is fed into a stress-detection model to detect and classify the individual’s stress state (i.e. stress or no stress). A detailed evaluation demonstrates that StressNet achieves estimated the ISTI signal with 95% accuracy and detect stress with average precision of 0.842. 
    more » « less
  3. As wearable devices become more popular, ego-centric information recorded with these devices can be used to better understand the behaviors of the wearer and other people the wearer is interacting with. Data such as the voice, head movement, galvanic skin responses (GSR) to measure arousal levels, etc., obtained from such devices can provide a window into the underlying affect of both the wearer and his/her conversant. In this study, we examine the characteristics of two types of dyadic conversations. In one case, the interlocutors discuss a topic on which they agree, while the other situation involves interlocutors discussing a topic on which they disagree, even if they are friends. The range of topics is mostly politically motivated. The egocentric information is collected using a pair of wearable smart glasses for video data and a smart wristband for physiological data, including GSR. Using this data, various features are extracted including the facial expressions of the conversant and the 3D motion from the wearer's camera within the environment - this motion is termed as egomotion. The goal of this work is to investigate whether the nature of a discussion could be better determined either by evaluating the behavior of an individual in the conversation or by evaluating the pairing/coupling of the behaviors of the two people in the conversation. The pairing is accomplished using a modified formulation of the dynamic time warping (DTW) algorithm. A random forest classifier is implemented to evaluate the nature of the interaction (agreement versus disagreement) using individualistic and paired features separately. The study found that in the presence of the limited data used in this work, individual behaviors were slightly more indicative of the type of discussion (85.43% accuracy) than the paired behaviors (83.33% accuracy). 
    more » « less