skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automated classification of activities in classroom videos.
Classroom videos are a common source of data for educational researchers studying classroom interactions as well as a resource for teacher education and professional development. Over the last several decades emerging technologies have been applied to classroom videos to record, transcribe, and analyze classroom interactions. With the rise of machine learning, we report on the development and validation of neural networks to classify instructional activities using video signals, without analyzing speech or audio features, from a large corpus of nearly 250 h of classroom videos from elementary mathematics and English language arts instruction. Results indicated that the neural networks performed fairly-well in detecting instructional activities, at diverse levels of complexity, as compared to human raters. For instance, one neural network achieved over 80% accuracy in detecting four common activity types: whole class activity, small group activity, individual activity, and transition. An issue that was not addressed in this study was whether the fine-grained and agnostic instructional activities detected by the neural networks could scale up to supply information about features of instructional quality. Future applications of these neural networks may enable more efficient cataloguing and analysis of classroom videos at scale and the generation of fine-grained data about the classroom environment to inform potential implications for teaching and learning.  more » « less
Award ID(s):
2000487
PAR ID:
10523742
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Hwang, Gwo-Jen; Xie, Haoran; Wah, Benjamin; Gasevic, Dragan
Publisher / Repository:
Computers and Education: Artificial Intelligence
Date Published:
Journal Name:
Computers and Education: Artificial Intelligence
Volume:
6
Issue:
C
ISSN:
2666-920X
Page Range / eLocation ID:
100207
Subject(s) / Keyword(s):
Elementary education Classroom video Classroom activity recognition Neural networks Computer vision
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Korban, Matthew; Youngs, Peter; Acton, Scott T (Ed.)
    Analyzing instructional videos via computer vision and machine learning holds promise for several tasks, such as assessing teacher performance and classroom climate, evaluating student engagement, and identifying racial bias in instruction. The traditional way of evaluating instructional videos depends on manual observation with human raters, which is time-consuming and requires a trained labor force. Therefore, this paper tests several deep network architectures in the automation of instruc- tional video analysis, where the networks are tailored to recognize classroom activity. Our experimental setup includes a set of 250 hours of primary and middle school videos that are annotated by expert human raters. We present several strategies to handle varying length of instructional activities, a major challenge in the detection of instructional activity. Based on the proposed strategies, we enhance and compare different deep networks for detecting instructional activity. 
    more » « less
  2. Turkan, Yelda; Louis, Joseph; Leite, Fernanda; Ergan, Semiha (Ed.)
    Human activity recognition (HAR) using machine learning has shown tremendous promise in detecting construction workers’ activities. HAR has many applications in human-robot interaction research to enable robots’ understanding of human counterparts’ activities. However, many existing HAR approaches lack robustness, generalizability, and adaptability. This paper proposes a transfer learning methodology for activity recognition of construction workers that requires orders of magnitude less data and compute time for comparable or better classification accuracy. The developed algorithm transfers features from a model pre-trained by the original authors and fine-tunes them for the downstream task of activity recognition in construction. The model was pre-trained on Kinetics-400, a large-scale video-based human activity recognition dataset with 400 distinct classes. The model was fine-tuned and tested using videos captured from manual material handling (MMH) activities found on YouTube. Results indicate that the fine-tuned model can recognize distinct MMH tasks in a robust and adaptive manner which is crucial for the widespread deployment of collaborative robots in construction. 
    more » « less
  3. Hancock, E. (Ed.)
    This paper proposes a multi-modal transformer network for detecting actions in untrimmed videos. To enrich the action features, our transformer network utilizes a novel multi-modal attention mechanism that captures the correlations between different combinations of spa- tial and motion modalities. Exploring such correlations for actions effectively has not been explored before. We also suggest an algorithm to correct the motion distortion caused by camera movements. Such motion distortion severely reduces the expressive power of motion features represented by optical flow vectors. We also introduce a new instructional activity dataset that includes classroom videos from K-12 schools. We conduct comprehensive ex- periments to evaluate the performance of different approaches on our dataset. Our proposed algorithm outperforms the state-of-the-art methods on two public benchmarks, THUMOS14 and ActivityNet, and our instructional activity dataset. 
    more » « less
  4. Well-designed instructional videos are powerful tools for helping students learn and prompting students to use generative strategies while learning from videos further bolsters their effectiveness. However, little is known about how individual differences in motivational factors, such as achievement goals, relate to how students learn within multimedia environments that include instructional videos and generative strategies. Therefore, in this study, we explored how achievement goals predicted undergraduate students’ behaviors when learning with instructional videos that required students to answer practice questions between videos, as well as how those activities predicted subsequent unit exam performance one week later. Additionally, we tested the best measurement models for modeling achievement goals between traditional confirmatory factor analysis and bifactor confirmatory factor analysis. The bifactor model fit our data best and was used for all subsequent analyses. Results indicated that stronger mastery goal endorsement predicted performance on the practice questions in the multimedia learning environment, which in turn positively predicted unit exam performance. In addition, students’ time spent watching videos positively predicted practice question performance. Taken together, this research emphasizes the availing role of adaptive motivations, like mastery goals, in learning from instructional videos that prompt the use of generative learning strategies. 
    more » « less
  5. Korban, Matthew; Acton, Scott T; Youngs, Peter; Foster, Jonathan (Ed.)
    Instructional activity recognition is an analytical tool for the observation of classroom education. One of the primary challenges in this domain is dealing with the intri- cate and heterogeneous interactions between teachers, students, and instructional objects. To address these complex dynamics, we present an innovative activity recognition pipeline designed explicitly for instructional videos, leveraging a multi-semantic attention mechanism. Our novel pipeline uses a transformer network that incorporates several types of instructional seman- tic attention, including teacher-to-students, students-to-students, teacher-to-object, and students-to-object relationships. This com- prehensive approach allows us to classify various interactive activity labels effectively. The effectiveness of our proposed algo- rithm is demonstrated through its evaluation on our annotated instructional activity dataset. 
    more » « less