skip to main content


Title: Long‐term herbivore removal experiments reveal how geese and reindeer shape vegetation and ecosystem CO2 ‐fluxes in high‐ Arctic tundra
Abstract

Given the current rates of climate change, with associated shifts in herbivore population densities, understanding the role of different herbivores in ecosystem functioning is critical for predicting ecosystem responses. Here, we examined how migratory geese and resident, non‐migratory reindeer—two dominating yet functionally contrasting herbivores—control vegetation and ecosystem processes in rapidly warming Arctic tundra.

We collected vegetation and ecosystem carbon (C) flux data at peak plant growing season in the two longest running, fully replicated herbivore removal experiments found in high‐Arctic Svalbard. Experiments had been set up independently in wet habitat utilised by barnacle geeseBranta leucopsisin summer and in moist‐to‐dry habitat utilised by wild reindeerRangifer tarandus platyrhynchusyear‐round.

Excluding geese induced vegetation state transitions from heavily grazed, moss‐dominated (only 4 g m−2of live above‐ground vascular plant biomass) to ungrazed, graminoid‐dominated (60 g m−2after 4‐year exclusion) and horsetail‐dominated (150 g m−2after 15‐year exclusion) tundra. This caused large increases in vegetation C and nitrogen (N) pools, dead biomass and moss‐layer depth. Alterations in plant N concentration and CN ratio suggest overall slower plant community nutrient dynamics in the short‐term (4‐year) absence of geese. Long‐term (15‐year) goose removal quadrupled net ecosystem C sequestration (NEE) by increasing ecosystem photosynthesis more than ecosystem respiration (ER).

Excluding reindeer for 21 years also produced detectable increases in live above‐ground vascular plant biomass (from 50 to 80 g m−2; without promoting vegetation state shifts), as well as in vegetation C and N pools, dead biomass, moss‐layer depth and ER. Yet, reindeer removal did not alter the chemistry of plants and soil or NEE.

Synthesis. Although both herbivores were key drivers of ecosystem structure and function, the control exerted by geese in their main habitat (wet tundra) was much more pronounced than that exerted by reindeer in their main habitat (moist‐to‐dry tundra). Importantly, these herbivore effects are scale dependent, because geese are more spatially concentrated and thereby affect a smaller portion of the tundra landscape compared to reindeer. Our results highlight the substantial heterogeneity in how herbivores shape tundra vegetation and ecosystem processes, with implications for ongoing environmental change.

 
more » « less
Award ID(s):
2113641
NSF-PAR ID:
10478129
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
111
Issue:
12
ISSN:
0022-0477
Format(s):
Medium: X Size: p. 2627-2642
Size(s):
["p. 2627-2642"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Environmental changes can rapidly alter standing biomass in tundra plant communities; yet, to what extent can they modify plant‐community nutrient levels? Nutrient levels and their changes can affect biomass production, nutrient cycling rates and nutrient availability to herbivores. We examined how environmental perturbations alter Arctic plant‐community leaf nutrient concentrations (percentage of dry mass, i.e. resource quality) and nutrient pools (absolute mass per unit area, i.e. resource quantity).

    We experimentally imposed two different types of environmental perturbations in a high‐Arctic ecosystem in Svalbard, spanning three habitats differing in soil moisture and plant‐community composition. We mimicked both a pulse perturbation (a grubbing event by geese in spring) and a press perturbation (a constant level of summer warming).

    After 2 years of perturbations, we quantified peak‐season nitrogen and phosphorus concentrations in 1268 leaf samples from the most abundant vascular plant species. We derived community‐weighted nutrient concentrations and total amount of nutrients (pools) for whole plant communities and individual plant functional types (PFTs).

    Spring grubbing increased plant‐community nutrient concentrations in mesic (+13%) and wet (+8%), but not moist, habitats, and reduced nutrient pools in all habitats (moist: −49%; wet, mesic: −31% to −37%). Conversely, summer warming reduced plant‐community nutrient concentrations in mesic and moist (−10% to −12%), but not wet, habitats and increased nutrient pools in moist habitats (+50%).

    Fast‐growing PFTs exhibited nutrient‐concentration responses, while slow‐growing PFTs generally did not. Grubbing enhanced nutrient concentrations of forbs and grasses in wet habitats (+20%) and of horsetails and grasses in mesic habitats (+19–23%). Conversely, warming decreased nutrient concentrations of horsetails in wet habitats (−15%) and of grasses, horsetails and forbs in moist habitats (−12% to −15%). Nutrient pools held by each PFT were less affected, although the most abundant PFTs responded to perturbations.

    Synthesis. Arctic plant‐community nutrient levels can be rapidly altered by environmental changes, with consequences for short‐term process rates and plant‐herbivore interactions. Community‐level responses in nutrient concentrations and pools were opposing and differed among habitats and PFTs. Our findings have implications for how we understand herbivory‐ and warming‐induced shifts in the fine‐scaled distribution of resource quality and quantity within and across tundra habitats.

     
    more » « less
  2. Abstract

    Large and small mammalian herbivores are present in most vegetated areas in the Arctic and often have large impacts on plant community composition and ecosystem functioning. The relative importance of different herbivores and especially how their specific impact on the vegetation varies across the Arctic is however poorly understood.

    Here, we investigate how large and small herbivores influence vegetation density and plant community composition in four arctic vegetation types in Scandinavia and Alaska. We used a unique set of exclosures, excluding only large (reindeer and muskoxen) or all mammalian herbivores (also voles and lemmings) for at least 20 years.

    We found that mammalian herbivores in general decreased leaf area index, NDVI, and abundance of vascular plants in all four locations, even though the strength of the effect and which herbivore type caused these effects differed across locations. In three locations, herbivore presence caused contrasting plant communities, but not in the location with lowest productivity. Large herbivores had a negative effect on plant height, whereas small mammalian herbivores increased species diversity by decreasing dominance of the initially dominating plant species. Above‐ or belowground disturbances caused by herbivores were found to play an important role in shaping the vegetation in all locations.

    Synthesis:Based on these results, we conclude that both small and large mammalian herbivores influence vegetation in Scandinavia and Alaska in a similar way, some of which can mitigate effects of climate change. We also see important differences across locations, but these depend rather on local herbivore and plant community composition than large biogeographical differences among continents.

     
    more » « less
  3. Abstract

    Herbivory is a key process structuring vegetation in savannas, especially in Africa where large mammal herbivore communities remain intact. Exclusion experiments consistently show that herbivores impact savanna vegetation, but effect size variation has resisted explanation, limiting our understanding of the past, present and future roles of herbivory in savanna ecosystems.

    Synthesis of vegetation responses to herbivore exclusion shows that herbivory decreased grass abundance by 57.0% and tree abundance by 30.6% across African savannas.

    The magnitude of herbivore exclusion effects scaled with herbivore abundance: more grazing herbivores resulted in larger grass responses and more browsing herbivores in larger tree responses. However, existing experiments are concentrated in semi‐arid savannas (400–800‐mm rainfall) and soils data are mostly lacking, which makes disentangling environmental constraints a challenge and priority for future research.

    Observed herbivore impacts were ~2.1× larger than existing estimates modelled based on consumption. Wildlife metabolic rates may be higher than are usually used for estimating consumption, which offers one clear avenue for reconciling estimated herbivore consumption with observed herbivore impacts. Plant‐soil feedbacks, plant community composition, and the phenological or demographic timing of herbivory may also influence vegetation productivity, thereby magnifying herbivore impacts.

    Because herbivore abundance so closely predicts vegetation impact, changes in herbivore abundance through time are likely predictive of the past and future of their impacts. Grazer diversity in Africa has declined from its peak 1 million years ago and wild grazer abundance has declined historically, suggesting that grazing likely had larger impacts in the past than it does today.

    Current wildlife impacts are dominated by small‐bodied mixed feeders, which will likely continue into the future, but the magnitude of top‐down control may also depend on changing climate, fire and atmospheric CO2.

    Synthesis. Herbivore biomass determines the magnitude of their impacts on savanna vegetation, with effect sizes based on direct observation that outstrip existing modelled estimates across African savannas. Findings suggest substantial ecosystem impacts of herbivory and allow us to generate evidence‐based hypotheses of the past and future impacts of herbivores on savanna vegetation.

     
    more » « less
  4. Abstract

    A combination of theory and experiments predicts that increasing soil nutrients will modify herbivore and microbial impacts on ecosystem carbon cycling.

    However, few studies of herbivores and soil nutrients have measured both ecosystem carbon fluxes and carbon pools. Even more rare are studies manipulating microbes and nutrients that look at ecosystem carbon cycling responses.

    We added nutrients to a long‐term, experiment manipulating foliar fungi, soil fungi, mammalian herbivores and arthropods in a low fertility grassland. We measured gross primary production (GPP), ecosystem respiration (ER), net ecosystem exchange (NEE) and plant biomass throughout the growing season to determine how nutrients modify consumer impacts on ecosystem carbon cycling.

    Nutrient addition increased above‐ground biomass and GPP, but not ER, resulting in an increase in ecosystem carbon uptake rate. Reducing foliar fungi and arthropods increased plant biomass. Nutrients amplified consumer effects on plant biomass, such that arthropods and foliar fungi had a threefold larger impact on above‐ground biomass in fertilized plots.

    Synthesis. Our work demonstrates that throughout the growing season soil resources modify carbon uptake rates as well as animal and fungal impacts on plant biomass production. Taken together, ongoing nutrient pollution may increase ecosystem carbon uptake and drive fungi and herbivores to have larger impacts on plant biomass production.

     
    more » « less
  5. Abstract

    In arctic tundra, large and small mammalian herbivores have substantial impacts on the vegetation community and consequently can affect the magnitude of carbon cycling. However, herbivores are often absent from modern carbon cycle models, partly because relatively few field studies focus on herbivore impacts on carbon cycling. Our objectives were to quantify the impact of 21 years of large herbivore and large and small herbivore exclusion on carbon cycling during peak growing season in a dry heath tundra community. When herbivores were excluded, we observed a significantly greater leaf area index as well as greater vascular plant abundance. While we did not observe significant differences in deciduous dwarf shrub abundance across treatments, evergreen dwarf shrub abundance was greater where large and small herbivores were excluded. Both foliose and fruticose lichen abundance were higher in the large herbivore, but not the small and large herbivore exclosures. Net ecosystem exchange (NEE) likewise indicated the highest carbon uptake in the exclosure treatments and lowest uptake in the control (CT), suggesting that herbivory decreased the capacity of dry heath tundra to take up carbon. Moreover, our calculated NEE for average light and temperature conditions for July 2017, when our measurements were taken, indicated that the tundra was a carbon source in CT, but was a carbon sink in both exclosure treatments, indicating removal of grazing pressure can change the carbon balance of dry heath tundra. Collectively, these findings suggest that herbivore absence can lead to changes in plant community structure of dry heath tundra that in turn can increase its capacity to take up carbon.

     
    more » « less