skip to main content

Title: On the Unusual Variability of 2MASS J06195260–2903592: A Long-lived Disk around a Young Ultracool Dwarf
Abstract

We present the characterization of the low-gravity M6 dwarf 2MASS J06195260-2903592, previously identified as an unusual field object based on its strong IR excess and variable near-IR spectrum. Multiple epochs of low-resolution (R≈ 150) near-IR spectra show large-amplitude (≈0.1–0.5 mag) continuum variations on timescales of days to 12 yr, unlike the small-amplitude variability typical for field ultracool dwarfs. The variations between epochs are well-modeled as changes in the relative extinction (ΔAV≈ 2 mag). Similarly, Panoramic Survey Telescope and Rapid Response System 1 optical photometry varies on timescales as long as 11 yr (and possibly as short as an hour) and implies comparableAVchanges. Near Earth Object Wide-field Infrared Survey Explorer mid-IR light curves also suggest changes on 6 month timescales, with amplitudes consistent with the optical/near-IR extinction variations. However, near-IR spectra, near-IR photometry, and optical photometry obtained in the past year indicate that the source can also be stable on hourly and monthly timescales. From comparison to objects of similar spectral type, the total extinction of 2MASS J0619-2903 seems to beAV≈ 4–6 mag, with perhaps epochs of lower extinction. Gaia Early Data Release 3 (EDR3) finds that 2MASS J0619-2903 has a wide-separation (1.′2 = 10,450 au) stellar companion, with an more » isochronal age of3110+22Myr and a mass of0.300.03+0.04M. Adopting this companion’s age and EDR3 distance (145.2 ± 0.6 pc), we estimate a mass of 0.11–0.17Mfor 2MASS J0619-2903. Altogether, 2MASS J0619-2903 appears to possess an unusually long-lived primordial circumstellar disk, perhaps making it a more obscured analog to the “Peter Pan” disks found around a few M dwarfs in nearby young moving groups.

« less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10372769
Journal Name:
The Astronomical Journal
Volume:
164
Issue:
4
Page Range or eLocation-ID:
Article No. 165
ISSN:
0004-6256
Publisher:
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the discovery of the first millimeter afterglow of a short-durationγ-ray burst (SGRB) and the first confirmed afterglow of an SGRB localized by the GUANO system on Swift. Our Atacama Large Millimeter/Sub-millimeter Array (ALMA) detection of SGRB 211106A establishes an origin in a faint host galaxy detected in Hubble Space Telescope imaging at 0.7 ≲z≲ 1.4. From the lack of a detectable optical afterglow, coupled with the bright millimeter counterpart, we infer a high extinction,AV≳ 2.6 mag along the line of sight, making this one of the most highly dust-extincted SGRBs known to date. The millimeter-band light curve captures the passage of the synchrotron peak from the afterglow forward shock and reveals a jet break attjet=29.24.0+4.5days. For a presumed redshift ofz= 1, we infer an opening angle,θjet= (15.°5 ± 1.°4), and beaming-corrected kinetic energy oflog(EK/erg)=51.8±0.3, making this one of the widest and most energetic SGRB jets known to date. Combining all published millimeter-band upper limits in conjunction with the energetics for a large sample of SGRBs, we find that energetic outflows in high-density environments are more likely to have detectable millimeter counterparts. Concerted afterglow searches with ALMA shouldmore »yield detection fractions of 24%–40% on timescales of ≳2 days at rates of ≈0.8–1.6 per year, outpacing the historical discovery rate of SGRB centimeter-band afterglows.

    « less
  2. Abstract

    We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly modeled sample to date. Using theProspectorstellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift ofz=0.640.32+0.83(68% confidence), including nine photometric redshifts atz≳ 1. We further find a median mass-weighted age oftm=0.80.53+2.71Gyr, stellar mass of log(M*/M) =9.690.65+0.75, star formation rate of SFR =1.441.35+9.37Myr−1, stellar metallicity of log(Z*/Z) =0.380.42+0.44, and dust attenuation ofAV=0.430.36+0.85mag (68% confidence). Overall, the majority of short GRB hosts are star-forming (≈84%), with small fractions that are either transitioning (≈6%) or quiescent (≈10%); however, we observe a much larger fraction (≈40%) of quiescent and transitioning hosts atz≲ 0.25, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies as the general galaxy population, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution,more »with a fast-merging channel atz> 1 and a decreased neutron star binary formation efficiency from high to low redshifts. If short GRB hosts are representative of BNS merger hosts within the horizon of current gravitational wave detectors, these results can inform future searches for electromagnetic counterparts. All of the data and modeling products are available on the Broadband Repository for Investigating Gamma-ray burst Host Traits website.

    « less
  3. Abstract

    OB stars powering stellar bowshock nebulae (SBNe) have been presumed to have large peculiar velocities. We measured peculiar velocities of SBN central stars to assess their kinematics relative to the general O-star population using Gaia EDR3 data for 267 SBN central stars and a sample of 455 Galactic O stars to derive projected velocitiesv2D. For a subset of each sample, we obtained new optical spectroscopy to measure radial velocities and identify multiple-star systems. We find a minimum multiplicity fraction of 36% ± 6% among SBN central stars, consistent with >28% among runaway Galactic O stars. The large multiplicity fraction among runaways implicates very efficient dynamical ejection rather than binary-supernova origins. The medianv2Dof SBN central stars isv2D= 14.6 km s−1, larger than the medianv2D= 11.4 km s−1for non-bowshock O stars. Central stars of SBNe have a runaway (v2D> 25 km s−1) fraction of 247+9%, consistent with the223+3% for control-sample O stars. Most (76%) SBNe central stars are not runaways. Our analysis of alignment (ΔPA) between the nebular morphological andv2Dkinematic position angles reveals two populations: a highly aligned (σPA= 25°) population that includes stars with the largestv2D(31% of the sample) and a random (nonaligned) populationmore »(69%). SBNe that lie within or near Hiiregions comprise a larger fraction of this latter component than SBNe in isolated environments, implicating localized ISM flows as a factor shaping their orientations and morphologies. We outline a new conceptual approach to computing the solar local standard of rest motion, yielding [U,V,W] = [5.5, 7.5,4.5] km s−1.

    « less
  4. Abstract

    We use deep narrowband CaHK (F395N) imaging taken with the Hubble Space Telescope (HST) to construct the metallicity distribution function (MDF) of Local Group ultra-faint dwarf galaxy EridanusII(EriII). When combined with archival F475W and F814W data, we measure metallicities for 60 resolved red giant branch stars as faint asmF475W∼ 24 mag, a factor of ∼4× more stars than current spectroscopic MDF determinations. We find that EriIIhas a mean metallicity of [Fe/H] = −2.500.07+0.07and a dispersion ofσ[Fe/H]=0.420.06+0.06, which are consistent with spectroscopic MDFs, though more precisely constrained owing to a larger sample. We identify a handful of extremely metal-poor star candidates (EMP; [Fe/H] < −3) that are marginally bright enough for spectroscopic follow-up. The MDF of EriIIappears well described by a leaky box chemical evolution model. We also compute an updated orbital history for EriIIusing Gaia eDR3 proper motions, and find that it is likely on first infall into the Milky Way. Our findings suggest that EriIIunderwent an evolutionary history similar to that of an isolated galaxy. Compared to MDFs for select cosmological simulations of similar mass galaxies, we find that EriIIhas a lower fraction of stars withmore »[Fe/H] < −3, though such comparisons should currently be treated with caution due to a paucity of simulations, selection effects, and known limitations of CaHK for EMPs. This study demonstrates the power of deep HST CaHK imaging for measuring the MDFs of UFDs.

    « less
  5. Abstract

    We present the direct imaging discovery of a low-mass companion to the nearby accelerating F star, HIP 5319, using SCExAO coupled with the CHARIS, VAMPIRES, and MEC instruments in addition to Keck/NIRC2 imaging. CHARISJHK(1.1–2.4μm) spectroscopic data combined with VAMPIRES 750 nm, MECY, and NIRC2Lpphotometry is best matched by an M3–M7 object with an effective temperature ofT= 3200 K and surface gravity log(g) = 5.5. Using the relative astrometry for HIP 5319 B from CHARIS and NIRC2, and absolute astrometry for the primary from Gaia and Hipparcos, and adopting a log-normal prior assumption for the companion mass, we measure a dynamical mass for HIP 5319 B of3111+35MJ, a semimajor axis of18.64.1+10au, an inclination of69.415+5.6degrees, and an eccentricity of0.420.29+0.39. However, using an alternate prior for our dynamical model yields a much higher mass of12888+127MJ. Using data taken with the LCOGT NRES instrument we also show that the primary HIP 5319 A is a single star in contrast to previous characterizations of the system as a spectroscopic binary. This work underscores the importance of assumed priors in dynamical models for companions detected with imaging andmore »astrometry, and the need to have an updated inventory of system measurements.

    « less