Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Mesoscale convective systems (MCSs) are a substantial source of precipitation in the eastern U.S. and may be sensitive to regional climatic change. We use a suite of convection-permitting climate simulations to examine possible changes in MCS precipitation. Specifically, annual and regional totals of MCS and non-MCS precipitation generated during a retrospective simulation are compared to end-of-21st-century simulations based on intermediate and extreme climate change scenarios. Both scenarios produce more MCS precipitation and less non-MCS precipitation, thus significantly increasing the proportion of precipitation associated with MCSs across the U.S.more » « less
-
Abstract Explicit representation of finer‐scale processes can affect the sign and magnitude of the precipitation response to climate change between convection‐permitting and convection‐parameterizing models. We compare precipitation across two 15‐year epochs, a historical (HIST) and an end‐of‐21st‐century (EoC85), between a set of dynamically downscaled regional climate simulations at 3.75 km grid spacing (WRF) and bias‐corrected Community Earth System Model (CESM) output used to initialize and force the lateral boundaries of the downscaled simulations. In the historical climate, the downscaled simulations demonstrate less overall error than CESM when compared to observations for most portions of the conterminous United States. Both sets of simulations overestimate the incidence of environments with moderate to high precipitable water while CESM generally simulates rainfall that is too frequent but less intense. Within both sets of simulations, EoC85 rainfall amounts decrease in low‐moisture environments due to reduced rainfall frequency and intensity while rainfall amounts increase in high‐moisture environments as they occur more often. Overall, reductions in rainfall are stronger in WRF than in CESM, particularly during the warm season. This reduced drying in CESM is attributed to relatively higher rainfall frequency in environments with high concentrations of precipitable water and weak vertical motion. As a result, an increase in the occurrence of high moisture environments in EoC85 naturally favors more rainfall in CESM than WRF. Our results present an in‐depth examination of the characteristics of changes in overall accumulated precipitation and highlight an extra dimension of uncertainty when comparing convection‐permitting models against convection‐parameterizing models.more » « less
-
Abstract Assessing how increasing greenhouse gas concentrations may modify regional climates is an ongoing challenge. Relatively little work has examined how climate change may influence processes related to regional thunderstorm activity. This is important to consider in areas where thunderstorms are important for maintaining regional hydroclimates. This study focuses on three convection‐allowing climate simulations—namely, a retrospective simulation (1990–2005) and two possible climate change scenarios (2085–2100)—with domains encompassing the conterminous United States. Regional and seasonal variability is noted in the response of thunderstorm activity as measured by thresholds in simulated radar reflectivity factor in the two climate change scenarios. A decrease in thunderstorm activity is projected for the Southern Plains, whereas the Southeast and Midwest experience an increase in thunderstorm activity. An examination of environmental parameters related to thunderstorm activity reveals an overall increase in convective instability but spatially varying changes in convective inhibition.more » « less
-
Abstract This study presents a novel, high-resolution, dynamically downscaled dataset that will help inform regional and local stakeholders regarding potential impacts of climate change at the scales necessary to examine extreme mesoscale conditions. WRF-ARW version 4.1.2 was used in a convection-permitting configuration (horizontal grid spacing of 3.75 km; 51 vertical levels; data output interval of 15-min) as a regional climate model for a domain covering the contiguous US Initial and lateral boundary forcing for the regional climate model originates from a global climate model simulation by NCAR (Community Earth System Model) that participated in phase 5 of the Coupled Model Inter comparison Project. Herein, we use a version of these data that are regridded and bias corrected. Two 15-year downscaled simulation epochs were examined comprising of historical (HIST; 1990–2005) and potential future (FUTR; 2085–2100) climate using Representative Concentration Pathway (RCP) 8.5. HIST verification against independent observational data revealed that annual/seasonal/monthly temperature and precipitation (and their extremes) are replicated admirably in the downscaled HIST epoch, with the largest biases in temperature noted with daily maximum temperatures (too cold) and the largest biases in precipitation (too dry) across the southeast US during the boreal warm season. The simulations herein are improved compared to previous work, which is significant considering the differences in previous modeling approaches. Future projections of temperature under the RCP 8.5 scenario are consistent with previous works using various methods. Future precipitation projections suggest statistically significant decreases of precipitation across large segments of the southern Great Plains and Intermountain West, whereas significant increases were noted in the Tennessee/Ohio Valleys and across portions of the Pacific Northwest. Overall, these simulations serve as an additional datapoint/method to detect potential future changes in extreme meso-γ weather phenomena.more » « less
-
Abstract This research quantifies the spatiotemporal statistics of composite radar reflectivity in the vicinity of severe thunderstorm reports. By using over 20 years (1996–2017) of data and 500,000 severe thunderstorm reports, this study presents the most comprehensive analysis of the mesoscale presentation of radar reflectivity composites during severe weather events to date. We first present probability matched mean composites of approximately 5,000 radar images centred on tornado reports that contain one of three types of manually‐labelled convective storm modes—namely, (a) quasi‐linear convective system (QLCS); (b) cellular; or (c) tropical system. Next, we generate composites for tornado report data stratified by EF‐scale and for four temporal periods during which notable severe weather events took place. The data are then stratified by hazard, region, season, and time of day. The results show marked spatiotemporal and intra‐hazard variability in radar presentation. In general, cellular convection is favoured in the Great Plains of the United States, whereas QLCS convection is favoured in the Southeast United States. Night and cool‐season subsets showed a preference for QLCS convection, whereas day and warm‐season subsets showed a preference for cellular convection. These results agree well with the existing literature and suggest that the data extraction and organization approach is sound. Because of this, these data will be useful for future image classification studies in climate and atmospheric sciences—particularly those involving storm mode classification.more » « less
-
Abstract This research uses image classification and machine learning methods on radar reflectivity mosaics to segment, classify, and track quasi-linear convective systems (QLCSs) in the United States for a 22-yr period. An algorithm is trained and validated using radar-derived spatial and intensity information from thousands of manually labeled QLCS and non-QLCS event slices. The algorithm is then used to automate the identification and tracking of over 3000 QLCSs with high accuracy, affording the first, systematic, long-term climatology of QLCSs. Convective regions determined by the procedure to be QLCSs are used as foci for spatiotemporal filtering of observed severe thunderstorm reports; this permits an estimation of the number of severe storm hazards due to this morphology. Results reveal that nearly 32% of MCSs are classified as QLCSs. On average, 139 QLCSs occur annually, with most of these events clustered from April through August in the eastern Great Plains and central/lower Mississippi and Ohio River Valleys. QLCSs are responsible for a spatiotemporally variable proportion of severe hazard reports, with a maximum in QLCS-report attribution (30%–42%) in the western Ohio and central Mississippi River Valleys. Over 21% of tornadoes, 28% of severe winds, and 10% of severe hail reports are due to QLCSs across the central and eastern United States. The proportion of QLCS-affiliated tornado and severe wind reports maximize during the overnight and cool season, with more than 50% of tornadoes and wind reports in some locations due to QLCSs. This research illustrates the utility of automated storm-mode classification systems in generating extensive, systematic climatologies of phenomena, reducing the need for time-consuming and spatiotemporal-limiting methods where investigators manually assign morphological classifications.more » « less
-
A supercell is a distinct type of intense, long-lived thunderstorm that is defined by its quasi-steady, rotating updraft. Supercells are responsible for most damaging hail and deadly tornadoes, causing billions of dollars in losses and hundreds of casualties annually. This research uses high-resolution, convection-permitting climate simulations across 15-yr epochs that span the twenty-first century to assess how supercells may change across the United States. Specifically, the study explores how late-twentieth-century supercell populations compare with their late-twenty-first-century counterparts for two—intermediate and pessimistic—anthropogenic climate change trajectories. An algorithm identifies, segments, and tracks supercells in the simulation output using updraft helicity, which measures the magnitude of corkscrew flow through a storm’s updraft and is a common proxy for supercells. Results reveal that supercells will be more frequent and intense in future climates, with robust spatiotemporal shifts in their populations. Supercells are projected to become more numerous in regions of the eastern United States, while decreasing in frequency in portions of the Great Plains. Supercell risk is expected to escalate outside of the traditional severe storm season, with supercells and their perils likely to increase in late winter and early spring months under both emissions scenarios. Conversely, the latter part of the severe storm season may be curtailed, with supercells expected to decrease midsummer through early fall. These results suggest the potential for more significant tornadoes, hail, and extreme rainfall that, when combined with an increasingly vulnerable society, may produce disastrous consequences.more » « less
-
This research applies an automated mesoscale convective system (MCS) segmentation, classification, and tracking approach to composite radar reflectivity mosaic images that cover the contiguous United States (CONUS) and span a relatively long study period of 22 years (1996–2017). These data afford a novel assessment of the seasonal and interannual variability of MCSs. Additionally, hourly precipitation data from 16 of those years (2002–17) are used to systematically examine rainfall associated with radar-derived MCS events. The attributes and occurrence of MCSs that pass over portions of the CONUS east of the Continental Divide (ECONUS), as well as five author-defined subregions—North Plains, High Plains, Corn Belt, Northeast, and Mid-South—are also examined. The results illustrate two preferred regions for MCS activity in the ECONUS: 1) the Mid-South and Gulf Coast and 2) the Central Plains and Midwest. MCS occurrence and MCS rainfall display a marked seasonal cycle, with most of the regions experiencing these events primarily during the warm season (May–August). Additionally, MCS rainfall was responsible for over 50% of annual and seasonal rainfall for many locations in the ECONUS. Of particular importance, the majority of warm-season rainfall for regions with high agricultural land use (Corn Belt) and important aquifer recharge properties (High Plains) is attributable to MCSs. These results reaffirm that MCSs are a significant aspect of the ECONUS hydroclimate.more » « less
-
This research assesses the utility and validity of using simulated radar reflectivity to detect potential changes in linear and nonlinear mesoscale convective system (MCS) occurrence in the Midwest United States between the early and late 21st century using convection‐permitting climate simulation output. These data include a control run and a pseudo‐global warming (PGW) run that is based on RCP 8.5. First, using a novel segmentation, classification, and tracking procedure, MCS tracks are extracted from observed and simulated radar reflectivity. Next, a comparison between observed and the control run MCS statistics is performed, which finds a negative summertime bias that agrees with previous work. Using a convolutional neural network to perform probabilistic predictions, the MCS dataset is further stratified into highly organized, quasi‐linear convective systems (QLCSs)—which can include bow echoes, squall lines, and line echo wave patterns—and generally less‐organized, non‐QLCS events. The morphologically stratified data reveal that the negative MCS bias in this region is largely driven by too few QLCSs. Although comparisons between the control run and a PGW run suggest that all MCS events are less common in the future (including QLCS and non‐QLCS events), these changes are not spatially significant, whereas the biases between the control run and observations are spatially significant. A discussion on the importance and challenges of simulating QLCSs in convection‐permitting climate model runs is provided. Finally, potential avenues of exploration are suggested related to the aforementioned issues.more » « less
An official website of the United States government
