skip to main content


Title: A New Covariant Formalism for Kinetic Plasma Simulations in Curved Spacetimes
Abstract

Low-density plasmas are characterized by a large-scale separation between the gyromotion of particles around local magnetic fields and the macroscopic scales of the system, often making global kinetic simulations computationally intractable. The guiding center formalism has been proposed as a powerful tool to bridge the gap between these scales. Despite its usefulness, the guiding center approach has been formulated successfully only in flat spacetimes, limiting its applicability in astrophysical settings. Here, we present a new covariant formalism that leads to kinetic equations in the guiding center limit that are valid in arbitrary spacetimes. Through a variety of experiments, we demonstrate that our equations capture all known gyrocenter drifts while overcoming one severe limitation imposed on numerical algorithms by the fast timescales of the particle gyromotion. This formalism will enable explorations of a variety of global plasma kinetic phenomena in the curved spacetimes around black holes and neutron stars.

 
more » « less
NSF-PAR ID:
10478356
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
959
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L6
Size(s):
["Article No. L6"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We presentGRaM-X(GeneralRelativisticacceleratedMagnetohydrodynamics on AMReX), a new GPU-accelerated dynamical-spacetime general relativistic magnetohydrodynamics (GRMHD) code which extends the GRMHD capability of Einstein Toolkit to GPU-based exascale systems.GRaM-Xsupports 3D adaptive mesh refinement (AMR) on GPUs via a new AMR driver for the Einstein Toolkit calledCarpetXwhich in turn leveragesAMReX, an AMR library developed for use by the United States DOE’s Exascale Computing Project. We use the Z4c formalism to evolve the Einstein equations and the Valencia formulation to evolve the equations of GRMHD.GRaM-Xsupports both analytic as well as tabulated equations of state. We implement TVD and WENO reconstruction methods as well as the HLLE Riemann solver. We test the accuracy of the code using a range of tests on static spacetime, e.g. 1D magnetohydrodynamics shocktubes, the 2D magnetic rotor and a cylindrical explosion, as well as on dynamical spacetimes, i.e. the oscillations of a 3D Tolman-Oppenheimer-Volkhof star. We find excellent agreement with analytic results and results of other codes reported in literature. We also perform scaling tests and find thatGRaM-Xshows a weak scaling efficiency of ∼40%–50% on 2304 nodes (13824 NVIDIA V100 GPUs) with respect to single-node performance on OLCF’s supercomputer Summit.

     
    more » « less
  2. Abstract

    The dissipative mechanism in weakly collisional plasma is a topic that pervades decades of studies without a consensus solution. We compare several energy dissipation estimates based on energy transfer processes in plasma turbulence and provide justification for the pressure–strain interaction as a direct estimate of the energy dissipation rate. The global and scale-by-scale energy balances are examined in 2.5D and 3D kinetic simulations. We show that the global internal energy increase and the temperature enhancement of each species are directly tracked by the pressure–strain interaction. The incompressive part of the pressure–strain interaction dominates over its compressive part in all simulations considered. The scale-by-scale energy balance is quantified by scale filtered Vlasov–Maxwell equations, a kinetic plasma approach, and the lag dependent von Kármán–Howarth equation, an approach based on fluid models. We find that the energy balance is exactly satisfied across all scales, but the lack of a well-defined inertial range influences the distribution of the energy budget among different terms in the inertial range. Therefore, the widespread use of the Yaglom relation in estimating the dissipation rate is questionable in some cases, especially when the scale separation in the system is not clearly defined. In contrast, the pressure–strain interaction balances exactly the dissipation rate at kinetic scales regardless of the scale separation.

     
    more » « less
  3. Abstract

    The expanding-box model of the solar wind has been adopted in the literature within the context of magnetohydrodynamics, hybrid, and full particle-in-cell simulations to investigate the dynamic evolution of the solar wind. The present paper extends such a method to the framework of self-consistent quasilinear kinetic theory. It is shown that the expanding-box quasilinear methodology is largely equivalent to the inhomogeneous steady-state quasilinear model discussed earlier in the literature, but a distinction regarding the description of wave dynamics between the two approaches is also found. The expanding-box quasilinear formalism is further extended to include the effects of a spiraling solar-wind magnetic field as well as collisional age effects. The present finding shows that the expanding-box quasilinear approach and the steady-state global-kinetic models may be employed interchangeably in order to address other more complex problems associated with the solar-wind dynamics.

     
    more » « less
  4. Abstract

    Knowledge silos emerge when structural properties of organizational interaction networks limit the diffusion of information. These structural barriers are known to take many forms at different scales—hubs in otherwise sparse organizations, large dense teams, or global core-periphery structure—but we lack an understanding of how these different structures interact and shape dynamics. Here we take a first theoretical step in bridging the gap between the mathematical literature on localization of spreading dynamics and the more applied literature on knowledge silos in organizational interaction networks. To do so, we introduce a new model that considers a layered structure of teams to unveil a new form of hierarchical localization (i.e. the localization of information at the top or center of an organization) and study its interplay with known phenomena of mesoscopic localization (i.e. the localization of information in large groups),k-core localization (i.e. around denser subgraphs) and hub localization (i.e. around high degree stars). We also include a complex contagion mechanism by considering a general infection kernel which can depend on hierarchical level (influence), degree (popularity), infectious neighbors (social reinforcement) or team size (importance). This very general model allows us to explore the multifaceted phenomenon of information siloing in complex organizational interaction networks and opens the door to new optimization problems to promote or hinder the emergence of different localization regimes.

     
    more » « less
  5. In the previous works [RSR19, SR22] we have introduced a new type of self-similarity for the Einstein vacuum equations characterized by the fact that the homothetic vector field may be spacelike on the past light cone of the singularity. In this work we give a systematic treatment of this new self-similarity. In particular, we provide geometric characterizations of spacetimes admitting the new symmetry and show the existence and uniqueness of formal expansions around the past null cone of the singularity which may be considered analogues of the well-known Fefferman–Graham expansions. In combination with results from [RSR19] our analysis will show that the twisted self-similar solutions are sufficiently general to describe all possible asymptotic behaviors for spacetimes in the small data regime which are selfsimilar and whose homothetic vector field is everywhere spacelike on an initial spacelike hypersurface. We present an application of this later fact to the understanding of the global structure of Fefferman–Graham spacetimes and the naked singularities of [RSR19, SR22]. Lastly, we observe that by an amalgamation of the techniques from [RSR18, RSR19], one may associate true solutions to the Einstein vacuum equations to each of our formal expansions in a suitable region of spacetime. 
    more » « less