skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Twisted Self-Similarity and the Einstein Vacuum Equations
In the previous works [RSR19, SR22] we have introduced a new type of self-similarity for the Einstein vacuum equations characterized by the fact that the homothetic vector field may be spacelike on the past light cone of the singularity. In this work we give a systematic treatment of this new self-similarity. In particular, we provide geometric characterizations of spacetimes admitting the new symmetry and show the existence and uniqueness of formal expansions around the past null cone of the singularity which may be considered analogues of the well-known Fefferman–Graham expansions. In combination with results from [RSR19] our analysis will show that the twisted self-similar solutions are sufficiently general to describe all possible asymptotic behaviors for spacetimes in the small data regime which are selfsimilar and whose homothetic vector field is everywhere spacelike on an initial spacelike hypersurface. We present an application of this later fact to the understanding of the global structure of Fefferman–Graham spacetimes and the naked singularities of [RSR19, SR22]. Lastly, we observe that by an amalgamation of the techniques from [RSR18, RSR19], one may associate true solutions to the Einstein vacuum equations to each of our formal expansions in a suitable region of spacetime.  more » « less
Award ID(s):
1900288
PAR ID:
10439473
Author(s) / Creator(s):
Date Published:
Journal Name:
Communications in mathematical physics
ISSN:
1432-0916
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We review recent mathematical results concerning the high-frequency solutions to the Einstein vacuum equations and the limits of these solutions. In particular, we focus on two conjectures of Burnett, which attempt to give an exact characterization of high-frequency limits of vacuum spacetimes as solutions to the Einstein–massless Vlasov system. Some open problems and future directions are discussed. 
    more » « less
  2. null (Ed.)
    A bstract The gravitational dual to the grand canonical ensemble of a large N holographic theory is a charged black hole. These spacetimes — for example Reissner- Nordström-AdS — can have Cauchy horizons that render the classical gravitational dynamics of the black hole interior incomplete. We show that a (spatially uniform) deformation of the CFT by a neutral scalar operator generically leads to a black hole with no inner horizon. There is instead a spacelike Kasner singularity in the interior. For relevant deformations, Cauchy horizons never form. For certain irrelevant deformations, Cauchy horizons can exist at one specific temperature. We show that the scalar field triggers a rapid collapse of the Einstein-Rosen bridge at the would-be Cauchy horizon. Finally, we make some observations on the interior of charged dilatonic black holes where the Kasner exponent at the singularity exhibits an attractor mechanism in the low temperature limit. 
    more » « less
  3. We prove the nonlinear stability of the asymptotic behaviour of perturbations of subfamilies of Kasner solutions in the contracting time direction within the class of polarized T 2 -symmetric solutions of the vacuum Einstein equations with arbitrary cosmological constant Λ . This stability result generalizes the results proven in Ames E et al. (2022 Stability of AVTD Behavior within the Polarized T 2 -symmetric vacuum spacetimes. Ann. Henri Poincaré . ( doi:10.1007/s00023-021-01142-0 )), which focus on the Λ = 0 case, and as in that article, the proof relies on an areal time foliation and Fuchsian techniques. Even for Λ = 0 , the results established here apply to a wider class of perturbations of Kasner solutions within the family of polarized T 2 -symmetric vacuum solutions than those considered in Ames E et al. (2022 Stability of AVTD Behavior within the Polarized T 2 -symmetric vacuum spacetimes. Ann. Henri Poincaré . ( doi:10.1007/s00023-021-01142-0 )) and Fournodavlos G et al. (2020 Stable Big Bang formation for Einstein’s equations: the complete sub-critical regime . Preprint. ( http://arxiv.org/abs/2012.05888 )). Our results establish that the areal time coordinate takes all values in ( 0 , T 0 ] for some T 0 > 0 , for certain families of polarized T 2 -symmetric solutions with cosmological constant. This article is part of the theme issue ‘The future of mathematical cosmology, Volume 1’. 
    more » « less
  4. The semiclassical backreaction equations are solved in closed Robertson-Walker spacetimes containing a positive cosmological constant and a conformally coupled massive scalar field. Renormalization of the stress-energy tensor results in higher derivative terms that can lead to solutions that vary on much shorter time scales than the solutions that would occur if the higher derivative terms were not present. These extra solutions can be eliminated through the use of order reduction. Four different methods of order reduction are investigated. These are first applied to the case when only conformally invariant fields, with and without classical radiation, are present. Then they are applied to the massive conformally coupled scalar field. The effects of different adiabatic vacuum states for the massive field are considered. It is found that if enough particles are produced, then the Universe collapses to a final singularity. Otherwise it undergoes a bounce, but at a smaller value of the scale factor (for the models considered) than occurs for the classical de Sitter solution. The stress-energy tensor incorporates both particle production and vacuum polarization effects. An analysis of the energy density of the massive field is done to determine when the contribution from the particles dominates. 
    more » « less
  5. Abstract In classical general relativity, the values of fields on spacetime are uniquely determined by their values at an initial time within the domain of dependence of this initial data surface. However, it may occur that the spacetime under consideration extends beyond this domain of dependence, and fields, therefore, are not entirely determined by their initial data. This occurs, for example, in the well-known (maximally) extended Reissner–Nordström or Reissner–Nordström–deSitter (RNdS) spacetimes. The boundary of the region determined by the initial data is called the ‘Cauchy horizon.’ It is located inside the black hole in these spacetimes. The strong cosmic censorship conjecture asserts that the Cauchy horizon does not, in fact, exist in practice because the slightest perturbation (of the metric itself or the matter fields) will become singular there in a sufficiently catastrophic way that solutions cannot be extended beyond the Cauchy horizon. Thus, if strong cosmic censorship holds, the Cauchy horizon will be converted into a ‘final singularity,’ and determinism will hold. Recently, however, it has been found that, classically this is not the case in RNdS spacetimes in a certain range of mass, charge, and cosmological constant. In this paper, we consider a quantum scalar field in RNdS spacetime and show that quantum theory comes to the rescue of strong cosmic censorship. We find that for any state that is nonsingular (i.e., Hadamard) within the domain of dependence, the expected stress-tensor blows up with affine parameter,V, along a radial null geodesic transverse to the Cauchy horizon asTVV∼C/V2withCindependent of the state andC≠ 0 generically in RNdS spacetimes. This divergence is stronger than in the classical theory and should be sufficient to convert the Cauchy horizon into a singularity through which the spacetime cannot be extended as a (weak) solution of the semiclassical Einstein equation. This behavior is expected to be quite general, although it is possible to haveC= 0 in certain special cases, such as the BTZ black hole. 
    more » « less