In order to meet the performance/privacy require- ments of future data-intensive mobile applications, e.g., self- driving cars, mobile data analytics, and AR/VR, service providers are expected to draw on shared storage/computation/connectivity resources at the network “edge”. To be cost-effective, a key functional requirement for such infrastructure is enabling the shar- ing of heterogeneous resources amongst tenants/service providers supporting spatially varying and dynamic user demands. This paper proposes a resource allocation criterion, namely, Share Constrained Slicing (SCS), for slices allocated predefined shares of the network’s resources, which extends traditional α−fairness criterion, by striking a balance among inter- and intra-slice fairness vs. overall efficiency. We show that SCS has several desirable properties including slice-level protection, envyfreeness, and load- driven elasticity. In practice, mobile users’ dynamics could make the cost of implementing SCS high, so we discuss the feasibility of using a simpler (dynamically) weighted max-min as a surrogate resource allocation scheme. For a setting with stochastic loads and elastic user requirements, we establish a sufficient condition for the stability of the associated coupled network system. Finally, and perhaps surprisingly, we show via extensive simulations that while SCS (and/or the surrogate weighted max-min allocation) provides inter-slice protection, they can achieve improved job delay and/or perceived throughput, as compared to other weighted max- min based allocation schemes whose intra-slice weight allocation is not share-constrained, e.g., traditional max-min or discriminatory processor sharing.
more »
« less
Constrained Network Slicing Games: Achieving Service Guarantees and Network Efficiency
Abstract—Network slicing is a key capability for next gen- eration mobile networks. It enables infrastructure providers to cost effectively customize logical networks over a shared infrastructure. A critical component of network slicing is resource allocation, which needs to ensure that slices receive the resources needed to support their services while optimizing network effi- ciency. In this paper, we propose a novel approach to slice-based resource allocation named Guaranteed seRvice Efficient nETwork slicing (GREET). The underlying concept is to set up a con- strained resource allocation game, where (i) slices unilaterally optimize their allocations to best meet their (dynamic) customer loads, while (ii) constraints are imposed to guarantee that, if they wish so, slices receive a pre-agreed share of the network resources. The resulting game is a variation of the well-known Fisher mar- ket, where slices are provided a budget to contend for network resources (as in a traditional Fisher market), but (unlike a Fisher market) prices are constrained for some resources to ensure that the pre-agreed guarantees are met for each slice. In this way, GREET combines the advantages of a share-based approach (high efficiency by flexible sharing) and reservation-based ones (which provide guarantees by assigning a fixed amount of resources). We characterize the Nash equilibrium, best response dynamics, and propose a practical slice strategy with provable convergence properties. Extensive simulations exhibit substantial improvements over network slicing state-of-the-art benchmarks.
more »
« less
- Award ID(s):
- 1910112
- PAR ID:
- 10478423
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE/ACM Transactions on Networking
- ISSN:
- 1063-6692
- Page Range / eLocation ID:
- 1 to 16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Network slicing enables operators to efficiently support diverse applications on a shared infrastructure. However, the evolving complexity of networks, compounded by inter-cell interference, necessitates agile and adaptable resource management. While deep learning offers solutions for coping with complexity, its adaptability to dynamic configurations remains limited. In this paper, we propose a novel hybrid deep learning algorithm called IDLA (integrated deep learning with the Lagrangian method). This integrated approach aims to enhance the scalability, flexibility, and robustness of slicing resource allocation solutions by harnessing the high approximation capability of deep learning and the strong generalization of classical non-linear optimization methods. Then, we introduce a variational information bottleneck (VIB)-assisted domain adaptation (DA) approach to enhance integrated deep learning and Lagrangian method (IDLA)’s adaptability across diverse network environments and conditions. We propose pre-training a variational information bottleneck (VIB)-based Quality of Service (QoS) estimator, using slice-specific inputs shared across all source domain slices. Each target domain slice can deploy this estimator to predict its QoS and optimize slice resource allocation using the IDLA algorithm. This VIB-based estimator is continuously fine-tuned with a mixture of samples from both the source and target domains until convergence. Evaluating on a multi-cell network with time-varying slice configurations, the VIB-enhanced IDLA algorithm outperforms baselines such as heuristic and deep reinforcement learning-based solutions, achieving twice the convergence speed and 16.52% higher asymptotic performance after slicing configuration changes. Transferability assessment demonstrates a 25.66% improvement in estimation accuracy with VIB, especially in scenarios with significant domain gaps, highlighting its robustness and effectiveness across diverse domains.more » « less
-
This paper presents a study on resource control for autoscaling virtual radio access networks (RAN slices) in next-generation wireless networks. The dynamic instantiation and termination of on-demand RAN slices require efficient autoscaling of computational resources at the edge. Autoscaling involves vertical scaling (VS) and horizontal scaling (HS) to adapt resource allocation based on demand variations. However, the strict processing time requirements for RAN slices pose challenges when instantiating new containers. To address this issue, we propose removing resource limits from slice configuration and leveraging the decision-making capabilities of a centralized slicing controller. We introduce a resource control agent (RC) that determines resource limits as the number of computing resources packed into containers, aiming to minimize deployment costs while maintaining processing time below a threshold. The RAN slicing workload is modeled using the Low-Density Parity Check (LDPC) decoding algorithm, known for its stochastic demands. We formulate the problem as a variant of the stochastic bin packing problem (SBPP) to satisfy the random variations in radio workload. By employing chance-constrained programming, we approach the SBPP resource control (S-RC) problem. Our numerical evaluation demonstrates that S-RC maintains the processing time requirement with a higher probability compared to configuring RAN slices with predefined limits, although it introduces a 45% overall average cost overhead.more » « less
-
An important aspect of 5G networks is the development of Radio Access Network (RAN) slicing, a concept wherein the virtualized infrastructure of wireless networks is subdivided into slices (or enterprises), tailored to fulfill specific use-cases. A key focus in this context is the efficient radio resource allocation to meet various enterprises’ service-level agreements (SLAs). In this work, we introduce Helix: a channel-aware and SLAaware RAN slicing framework for massive multiple input multiple output (MIMO) networks where resource allocation extends to incorporate the spatial dimension available through beamforming. Essentially, the same time-frequency resource block (RB) can be shared across multiple users through multiple antennas. Notably, certain enterprises, particularly those operating critical infrastructure, necessitate dedicated RB allocation, denoted as private networks, to ensure security. Conversely, some enterprises would allow resource sharing with others in the public network to maintain network performance while minimizing capital expenditure. Building upon this understanding, Helix comprises scheduling schemes under both scenarios: where different slices share the same set of RBs, and where they require exclusivity of allocated RBs. We validate the efficacy of our proposed schedulers through simulation by utilizing a channel data set collected from a real-world massive MIMO testbed. Our assessments demonstrate that resource sharing across slices using our approach can lead up to 60.9% reduction in RB usage compared to other approaches. Moreover, our proposed schedulers exhibit significantly enhanced operational efficiency, with significantly faster running time compared to exhaustive greedy approaches while meeting the stringent 5G sub-millisecond-level latency requirement.more » « less
-
An important aspect of 5G networks is the development of Radio Access Network (RAN) slicing, a concept wherein the virtualized infrastructure of wireless networks is subdivided into slices (or enterprises), tailored to fulfill specific use-cases. A key focus in this context is the efficient radio resource allocation to meet various enterprises' service-level agreements (SLAs). In this work, we introduce Helix: a channel-aware and SLA-aware RAN slicing framework for massive multiple input multiple output (MIMO) networks where resource allocation extends to incorporate the spatial dimension available through beamforming. Essentially, the same time-frequency resource block (RB) can be shared across multiple users through multiple antennas. Notably, certain enterprises, particularly those operating critical infrastructure, necessitate dedicated RB allocation, denoted as private networks, to ensure security. Conversely, some enterprises would allow resource sharing with others in the public network to maintain network performance while minimizing capital expenditure. Building upon this understanding, Helix comprises scheduling schemes under both scenarios: where different slices share the same set of RBs, and where they require exclusivity of allocated RBs. We validate the efficacy of our proposed schedulers through simulation by utilizing a channel data set collected from a real-world massive MIMO testbed. Our assessments demonstrate that resource sharing across slices using our approach can lead up to 60.9% reduction in RB usage compared to other approaches. Moreover, our proposed schedulers exhibit significantly enhanced operational efficiency, with significantly faster running time compared to exhaustive greedy approaches while meeting the stringent 5G sub-millisecond-level latency requirement.more » « less
An official website of the United States government

