skip to main content


Title: Towards Efficiently Provisioning 5G Core Network Slice Based on Resource and Topology Attributes
Efficient provisioning of 5G network slices is a major challenge for 5G network slicing technology. Previous slice provisioning methods have only considered network resource attributes and ignored network topology attributes. These methods may result in a decrease in the slice acceptance ratio and the slice provisioning revenue. To address these issues, we propose a two-stage heuristic slice provisioning algorithm, called RT-CSP, for the 5G core network by jointly considering network resource attributes and topology attributes in this paper. The first stage of our method is called the slice node provisioning stage, in which we propose an approach to scoring and ranking nodes using network resource attributes (i.e., CPU capacity and bandwidth) and topology attributes (i.e., degree centrality and closeness centrality). Slice nodes are then provisioned according to the node ranking results. In the second stage, called the slice link provisioning stage, the k-shortest path algorithm is implemented to provision slice links. To further improve the performance of RT-CSP, we propose RT-CSP+, which uses our designed strategy, called minMaxBWUtilHops, to select the best physical path to host the slice link. The strategy minimizes the product of the maximum link bandwidth utilization of the candidate physical path and the number of hops in it to avoid creating bottlenecks in the physical path and reduce the bandwidth cost. Using extensive simulations, we compared our results with those of the state-of-the-art algorithms. The experimental results show that our algorithms increase slice acceptance ratio and improve the provisioning revenue-to-cost ratio.  more » « less
Award ID(s):
1718929
NSF-PAR ID:
10258042
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
9
Issue:
20
ISSN:
2076-3417
Page Range / eLocation ID:
4361
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Availability is a key service metric when deploying service function chains (SFCs) over network slices in 5G networks. We study the problem of determining the composition of a slice for a service function chain and the mapping of the slice to the physical transport network in a way that guarantees availability of the SFC while minimizing cost. To improve the availability, we design a slice that provides multiple paths (possibly with non-disjoint routing over the physical infrastructure) for hosting SFCs, and we determine the appropriate dimensioning of bandwidth on each path. Our simulation results show the effectiveness of our approach in terms of the cost of establishing the SFC and the SFC acceptance ratio.

     
    more » « less
  2. In this work, we consider the network slice composition problem for Service Function Chains (SFCs), which addresses the issue of allocating bandwidth and VNF resources in a way that guarantees the availability of the SFC while minimizing cost. For the purpose of satisfying the availability requirement of the SFC, we adapt a traffic-weighted availability model which ensures that the long-term fraction of traffic supported by the slice topology remains above a desired threshold. We propose a method for composing a single or multi-path slice topology and for properly dimensioning VNF replicas and bandwidth on the slice paths. Through simulations, we show that our proposed algorithm can reduce the total cost of establishment compared to a dedicated protection approach in 5G networks. 
    more » « less
  3. This paper addresses a routing selection strategy for elastic network slices that dynamically adjust required resources over time. When admitting elastic initial slice requests, sufficient spare resources on the same path should be reserved to allow existing elastic slices to increase their bandwidth dynamically. We demonstrate a deep Reinforcement Learning (RL) model to intelligently make routing choice decisions for elastic slice requests and inelastic slice requests. This model achieves higher revenue and higher acceptance rates compared to traditional heuristic methods. Due to the lightness of this model, it can be deployed in an embedded system. We can also use a relatively small amount of data to train the model and achieve stable performance. Also, we introduce a Recurrent Neural Network to auto-encode the variable-size environment and train the encoder together with the RL model. 
    more » « less
  4. null (Ed.)
    Visualizing multivariate networks is challenging because of the trade-offs necessary for effectively encoding network topology and encoding the attributes associated with nodes and edges. A large number of multivariate network visualization techniques exist, yet there is little empirical guidance on their respective strengths and weaknesses. In this paper, we describe a crowdsourced experiment, comparing node-link diagrams with on-node encoding and adjacency matrices with juxtaposed tables. We find that node-link diagrams are best suited for tasks that require close integration between the network topology and a few attributes. Adjacency matrices perform well for tasks related to clusters and when many attributes need to be considered. We also reflect on our method of using validated designs for empirically evaluating complex, interactive visualizations in a crowdsourced setting. We highlight the importance of training, compensation, and provenance tracking. 
    more » « less
  5. This paper addresses the problem of admission control for elastic network slices that may dynamically adjust provisioned bandwidth levels over time. When admitting new slice requests, sufficient spare capacity must be reserved to allow existing elastic slices to dynamically increase their bandwidth allocation when needed. We demonstrate a lightweight deep Reinforcement Learning (RL) model to intelligently make ad-mission control decisions for elastic slice requests and inelastic slice requests. This model achieves higher revenue and higher acceptance rates compared to traditional heuristic methods. Due to the lightness of this model, it can be deployed without GPUs. We can also use a relatively small amount of data to train the model and to achieve stable performance. Also, we introduce a Recurrent Neural Network to encode the variable-size environment and train the encoder with the RL model together. 
    more » « less