Estimates of organismal thermal tolerance are frequently used to assess physiological risk from warming, yet the assumption that these estimates are predictive of mortality has been called into question. We tested this assumption in the cold-water-specialist frog, Ascaphus montanus . For seven populations, we used dynamic experimental assays to measure tadpole critical thermal maximum (CTmax) and measured mortality from chronic thermal stress for 3 days at different temperatures. We tested the relationship between previously estimated population CTmax and observed mortality, as well as the strength of CTmax as a predictor of mortality compared to local stream temperatures capturing varying timescales. Populations with higher CTmax experienced significantly less mortality in the warmest temperature treatment (25°C). We also found that population CTmax outperformed stream temperature metrics as the top predictor of observed mortality. These results demonstrate a clear link between CTmax and mortality from thermal stress, contributing evidence that CTmax is a relevant metric for physiological vulnerability assessments.
more »
« less
Starvation reduces thermal limits of the widespread copepod Acartia tonsa
Organismal thermal limits affect a wide range of biogeographical and ecological processes. Copepods are some of the most abundant animals on the planet and play key roles in aquatic habitats. Despite their abundance and ecological importance, there is limited data on the factors that affect copepod thermal limits, impeding our ability to predict how aquatic ecosystems will be affected by anthropogenic climate change. In a warming ocean, one factor that may have particularly important effects on thermal limits is the availability of food. A recently proposed feedback loop known as “metabolic meltdown” suggests that starvation and exposure to high temperatures interact to drastically reduce organismal thermal limits, increasing vulnerability to warming. To investigate one component of this feedback loop, we examined how starvation affects thermal limits (critical thermal maxima: CTmax of Acartia tonsa, a widespread estuarine copepod. We found that there was no effect of short‐duration exposure to starvation (up to 2 days). However, after 3 days, there was a significant decrease in the CTmax of starved copepods relative to the fed controls. Our results provide empirical evidence that extended periods of starvation reduce thermal limits, potentially initiating “metabolic meltdown” in this key species of coastal copepod. This suggests that changes in food availability may increase the vulnerability of copepods to increasing temperatures, amplifying the effects of climate change on coastal systems.
more »
« less
- PAR ID:
- 10478434
- Publisher / Repository:
- Ecology and Evolution
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 13
- Issue:
- 10
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Copepods are key components of aquatic habitats across the globe. Understanding how they respond to warming is important for predicting the effects of climate change on aquatic communities. Lethal thermal limits may play an important role in determining responses to warming. Thermal tolerance can vary over several different spatial and temporal scales, but we still lack a fundamental understanding of what drives the evolution of these patterns in copepods. In this Horizons piece, we provide a synthesis of global patterns in copepod thermal tolerance and potential acclimatory capacities. Copepod thermal tolerance increases with maximum annual temperature. We also find that the effects of phenotypic plasticity on thermal tolerance are negatively related to the magnitude of thermal tolerance, suggesting a potential trade-off between these traits. Our ability to fully describe these patterns is limited, however, by a lack of spatial, temporal and phylogenetic coverage in copepod thermal tolerance data. We indicate several priority areas for future work on copepod thermal tolerance, and accompanying suggestions regarding experimental design and methodology.more » « less
-
Abstract Climate change is resulting in increasing ocean temperatures and salinity variability, particularly in estuarine environments. Tolerance of temperature and salinity change interact and thus may impact organismal resilience. Populations can respond to multiple stressors in the short‐term (i.e., plasticity) or over longer timescales (i.e., adaptation). However, little is known about the short‐ or long‐term effects of elevated temperature on the tolerance of acute temperature and salinity changes. Here, we characterized the response of the near‐shore and estuarine copepod,Acartia tonsa, to temperature and salinity stress. Copepods originated from one of two sets of replicated >40 generation‐old temperature‐adapted lines: ambient (AM, 18°C) and ocean warming (OW, 22°C). Copepods from these lines were subjected to one and three generations at the reciprocal temperature. Copepods from all treatments were then assessed for differences in acute temperature and salinity tolerance. Development (one generation), three generations, and >40 generations of warming increased thermal tolerance compared to Ambient conditions, with development in OW resulting in equal thermal tolerance to three and >40 generations of OW. Strikingly, developmental OW and >40 generations of OW had no effect on low salinity tolerance relative to ambient. By contrast, when environmental salinity was reduced first, copepods had lower thermal tolerances. These results highlight the critical role for plasticity in the copepod climate response and suggest that salinity variability may reduce copepod tolerance to subsequent warming.more » « less
-
Kumar, Ram (Ed.)Short-term, acute warming events are increasing in frequency across the world’s oceans. For short-lived species like most copepods, these extreme events can occur over both within- and between-generational time scales. Yet, it is unclear whether exposure to acute warming during early life stages of copepods can cause lingering effects on metabolism through development, even after the event has ended. These lingering effects would reduce the amount of energy devoted to growth and affect copepod population dynamics. We exposed nauplii of an ecologically important coastal species, Acartia tonsa , to a 24-hour warming event (control: 18°C; treatment: 28°C), and then tracked individual respiration rate, body length, and stage duration through development. As expected, we observed a decrease in mass-specific respiration rates as individuals developed. However, exposure to acute warming had no effect on the ontogenetic patterns in per-capita or mass-specific respiration rates, body length, or development time. The lack of these carryover effects through ontogeny suggests within-generational resilience to acute warming in this copepod species.more » « less
-
ABSTRACT Organisms may simultaneously face thermal, desiccation and nutritional stress under climate change. Understanding the effects arising from the interactions among these stressors is relevant for predicting organisms' responses to climate change and for developing effective conservation strategies. Using both dynamic and static protocols, we assessed for the first time how sublethal desiccation exposure (at 16.7%, 50.0% and 83.3% of LD50) impacts the heat tolerance of foragers from two social bee species found on the Greek island of Lesbos: the managed European honey bee, Apis mellifera, and the wild, ground-nesting sweat bee Lasioglossum malachurum. In addition, we explored how a short-term starvation period (24 h), followed by a moderate sublethal desiccation exposure (50% of LD50), influences honey bee heat tolerance. We found that neither the critical thermal maximum (CTmax) nor the time to heat stupor was significantly impacted by sublethal desiccation exposure in either species. Similarly, starvation followed by moderate sublethal desiccation did not affect the average CTmax estimate, but it did increase its variance. Our results suggest that sublethal exposure to these environmental stressors may not always lead to significant changes in bees' heat tolerance or increase vulnerability to rapid temperature changes during extreme weather events, such as heat waves. However, the increase in CTmax variance suggests greater variability in individual responses to temperature stress under climate change, which may impact colony-level performance. The ability to withstand desiccation may be impacted by unmeasured hypoxic conditions and the overall effect of these stressors on solitary species remains to be assessed.more » « less
An official website of the United States government

