skip to main content


Title: Genome balance and dosage effect drive allopolyploid formation in Brassica

Polyploidy is a major evolutionary force that has shaped plant diversity. However, the various pathways toward polyploid formation and interploidy gene flow remain poorly understood. Here, we demonstrated that the immediate progeny of allotriploid AACBrassica(obtained by crossing allotetraploidBrassica napusand diploidBrassica rapa) was predominantly aneuploids with ploidal levels ranging from near-triploidy to near-hexaploidy, and their chromosome numbers deviated from the theoretical distribution toward increasing chromosome numbers, suggesting that they underwent selection. Karyotype and phenotype analyses showed that aneuploid individuals containing fewer imbalanced chromosomes had higher viability and fertility. Within three generations of self-fertilization, allotriploids mainly developed into near or complete allotetraploids similar toB. napusvia gradually increasing chromosome numbers and fertility, suggesting that allotriploids could act as a bridge in polyploid formation, with aneuploids as intermediates. Self-fertilized interploidy hybrids ultimately generated new allopolyploids carrying different chromosome combinations, which may create a reproductive barrier preventing allotetraploidy back to diploidy and promote gene flow from diploids to allotetraploids. These results suggest that the maintenance of a proper genome balance and dosage drove the recurrent conversion of allotriploids to allotetraploids, which may contribute to the formation and evolution of polyploids.

 
more » « less
Award ID(s):
2029959
NSF-PAR ID:
10478462
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
14
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bomblies, K (Ed.)
    The gene balance hypothesis proposes that selection acts on the dosage (i.e. copy number) of genes within dosage-sensitive portions of networks, pathways, and protein complexes to maintain balanced stoichiometry of interacting proteins, because perturbations to stoichiometric balance can result in reduced fitness. This selection has been called dosage balance selection. Dosage balance selection is also hypothesized to constrain expression responses to dosage changes, making dosage-sensitive genes (those encoding members of interacting proteins) experience more similar expression changes. In allopolyploids, where whole-genome duplication involves hybridization of diverged lineages, organisms often experience homoeologous exchanges that recombine, duplicate, and delete homoeologous regions of the genome and alter the expression of homoeologous gene pairs. Although the gene balance hypothesis makes predictions about the expression response to homoeologous exchanges, they have not been empirically tested. We used genomic and transcriptomic data from 6 resynthesized, isogenic Brassica napus lines over 10 generations to identify homoeologous exchanges, analyzed expression responses, and tested for patterns of genomic imbalance. Groups of dosage-sensitive genes had less variable expression responses to homoeologous exchanges than dosage-insensitive genes, a sign that their relative dosage is constrained. This difference was absent for homoeologous pairs whose expression was biased toward the B. napus A subgenome. Finally, the expression response to homoeologous exchanges was more variable than the response to whole-genome duplication, suggesting homoeologous exchanges create genomic imbalance. These findings expand our knowledge of the impact of dosage balance selection on genome evolution and potentially connect patterns in polyploid genomes over time, from homoeolog expression bias to duplicate gene retention.

     
    more » « less
  2. Abstract

    Efficient plastid transformation in Arabidopsis (Arabidopsis thaliana) requires genetic lines that are hypersensitive to spectinomycin due to the absence of a chloroplast acetyl-coenzyme A carboxylase (ACCase) encoded in the acetyl-coenzyme A carboxylase 2 (ACC2) nuclear gene. To obtain plastid transformation-competent oilseed rape (Brassica napus), we inactivated all nuclear encoded, chloroplast targeted ACCase copies using CRISPR–Cas9. Brassica napus (2n = 38, AACC) is a recent interspecific hybrid of Brassica rapa (2n = 20, AA) and B. oleracea (2n = 18, CC) and is expected to have at least two ACC2 copies, one from each parent. The sequenced genome has two ACC2 copies, one that is B. rapa-like and one that is B. oleracea-like. We designed single-guide RNAs (sgRNAs) that could simultaneously inactivate both nuclear ACC2 copies. We expressed Cas9 from a chimeric egg cell promoter 1.2 (EC1.2p) known to yield homozygous or biallelic mutants in Arabidopsis in the T1 generation. To maximize the probability of functionally inactivating both orthologs in a single step, each of the two vectors carried four sgRNAs. Four T0 transgenic lines were obtained by Agrobacterium tumefaciens-mediated hypocotyl transformation. Amplicon sequencing confirmed mutations in ACC2 genes in 10 T1 progeny, in seven of which no wild-type (WT) copy remained. The B. napus T2 seedlings lacking WT ACC2 gene copies exhibited a spectinomycin hypersensitive phenotype, suggesting that they will be a useful resource for chloroplast genome transformation.

     
    more » « less
  3. Summary

    Allopolyploidisation merges evolutionarily distinct parental genomes (subgenomes) into a single nucleus. A frequent observation is that one subgenome is ‘dominant’ over the other subgenome, often being more highly expressed.

    Here, we ‘replayed the evolutionary tape’ with six isogenic resynthesisedBrassica napusallopolyploid lines and investigated subgenome dominance patterns over the first 10 generations postpolyploidisation.

    We found that the same subgenome was consistently more dominantly expressed in all lines and generations and that >70% of biased gene pairs showed the same dominance patterns across all lines and anin silicohybrid of the parents. Gene network analyses indicated an enrichment for network interactions and several biological functions for theBrassica oleraceasubgenome biased pairs, but no enrichment was identified forBrassica rapasubgenome biased pairs. Furthermore, DNA methylation differences between subgenomes mirrored the observed gene expression bias towards the dominant subgenome in all lines and generations. Many of these differences in gene expression and methylation were also found when comparing the progenitor genomes, suggesting that subgenome dominance is partly related to parental genome differences rather than just a byproduct of allopolyploidisation.

    These findings demonstrate that ‘replaying the evolutionary tape’ in an allopolyploid results in largely repeatable and predictable subgenome expression dominance patterns.

     
    more » « less
  4. Abstract

    Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.

     
    more » « less
  5. Abstract

    Whole‐genome duplication is considered an important speciation mechanism in plants. However, its effect on reproductive isolation between higher cytotypes is not well understood. We used backcrosses between different ploidy levels and surveys of mixed‐ploidy contact zones to determine how reproductive barriers differed with cytotype across a polyploid complex. We backcrossed F1 hybrids derived from 2X‐4X and 4X‐6X crosses in theCampanula rotundifoliaautopolyploid complex, measured backcross fitness, and estimated backcross DNA cytotype. We then sampled four natural mixed‐ploidy contact zones (two 2X‐4X and two 4X‐6X), estimated ploidy, and genotyped individuals across each contact zone. Reproductive success and capacity for gene flow was markedly lower for 2X‐4X than 4X‐6X hybrids. In fact, 3X hybrids could not backcross; all 2X‐4X backcross progeny resulted from neotetraploid F1 hybrids. Further, no 3X individuals were found in 2X‐4X contact zones, and 2X and 4X individuals were genetically distinct. By contrast, backcrosses of 5X hybrids were relatively successful, particularly when crossed to 6X individuals. In 4X‐6X contact zones, 5X individuals and aneuploids were common and all cytotypes were largely genetically similar and spatially intermixed. Taken together, these results provide strong evidence that reproduction is low between 2X and 4X cytotypes, primarily occurring via unreduced gamete production, but that reproduction and gene flow are ongoing between 4X and 6X cytotypes. Further, it suggests whole‐genome duplication can result in speciation between diploids and polyploids, but is less likely to create reproductive barriers between different polyploid cytotypes, resulting in two fundamentally different potentials for speciation across polyploid complexes.

     
    more » « less