skip to main content


Title: Dynamics of accessible chromatin regions and subgenome dominance in octoploid strawberry
Abstract

Subgenome dominance has been reported in diverse allopolyploid species, where genes from one subgenome are preferentially retained and are more highly expressed than those from other subgenome(s). However, the molecular mechanisms responsible for subgenome dominance remain poorly understood. Here, we develop genome-wide map of accessible chromatin regions (ACRs) in cultivated strawberry (2n = 8x = 56, with A, B, C, D subgenomes). Each ACR is identified as an MNase hypersensitive site (MHS). We discover that the dominant subgenome A contains a greater number of total MHSs and MHS per gene than the submissive B/C/D subgenomes. Subgenome A suffers fewer losses of MHS-related DNA sequences and fewer MHS fragmentations caused by insertions of transposable elements. We also discover that genes and MHSs related to stress response have been preferentially retained in subgenome A. We conclude that preservation of genes and their cognate ACRs, especially those related to stress responses, play a major role in the establishment of subgenome dominance in octoploid strawberry.

 
more » « less
NSF-PAR ID:
10496255
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transcriptional divergence of duplicated genes after whole genome duplication (WGD) has been described in many plant lineages and is often associated with subgenome dominance, a genome-wide mechanism. However, it is unknown what underlies the transcriptional divergence of duplicated genes in polyploid species that lack subgenome dominance. Soybean is a paleotetraploid with a WGD that occurred 5 to 13 Mya. Approximately 50% of the duplicated genes retained from this WGD exhibit transcriptional divergence. We developed accessible chromatin region (ACR) datasets from leaf, flower, and seed tissues using MNase-hypersensitivity sequencing. We validated enhancer function of several ACRs associated with known genes using CRISPR/Cas9-mediated genome editing. The ACR datasets were used to examine and correlate the transcriptional patterns of 17,111 pairs of duplicated genes in different tissues. We demonstrate that ACR dynamics are correlated with divergence of both expression level and tissue specificity of individual gene pairs. Gain or loss of flanking ACRs and mutation ofcis-regulatory elements (CREs) within the ACRs can change the balance of the expression level and/or tissue specificity of the duplicated genes. Analysis of DNA sequences associated with ACRs revealed that the extensive sequence rearrangement after the WGD reshaped the CRE landscape, which appears to play a key role in the transcriptional divergence of duplicated genes in soybean. This may represent a general mechanism for transcriptional divergence of duplicated genes in polyploids that lack subgenome dominance.

     
    more » « less
  2. Purugganan, Michael (Ed.)
    Abstract Subgenome dominance after whole-genome duplication (WGD) has been observed in many plant species. However, the degree to which the chromatin environment affects this bias has not been explored. Here, we compared the dominant subgenome (maize1) and the recessive subgenome (maize2) with respect to patterns of sequence substitutions, genes expression, transposable element accumulation, small interfering RNAs, DNA methylation, histone modifications, and accessible chromatin regions (ACRs). Our data show that the degree of bias between subgenomes for all the measured variables does not vary significantly when both of the WGD genes are located in pericentromeric regions. Our data further indicate that the location of maize1 genes in chromosomal arms is pivotal for maize1 to maintain its dominance, but location has a less effect on maize2 homoeologs. In addition to homoeologous genes, we compared ACRs, which often harbor cis-regulatory elements, between the two subgenomes and demonstrate that maize1 ACRs have a higher level of chromatin accessibility, a lower level of sequence substitution, and are enriched in chromosomal arms. Furthermore, we find that a loss of maize1 ACRs near their nearby genes is associated with a reduction in purifying selection and expression of maize1 genes relative to their maize2 homoeologs. Taken together, our data suggest that chromatin environment and cis-regulatory elements are important determinants shaping the divergence and evolution of duplicated genes. 
    more » « less
  3. Summary

    Allopolyploidisation merges evolutionarily distinct parental genomes (subgenomes) into a single nucleus. A frequent observation is that one subgenome is ‘dominant’ over the other subgenome, often being more highly expressed.

    Here, we ‘replayed the evolutionary tape’ with six isogenic resynthesisedBrassica napusallopolyploid lines and investigated subgenome dominance patterns over the first 10 generations postpolyploidisation.

    We found that the same subgenome was consistently more dominantly expressed in all lines and generations and that >70% of biased gene pairs showed the same dominance patterns across all lines and anin silicohybrid of the parents. Gene network analyses indicated an enrichment for network interactions and several biological functions for theBrassica oleraceasubgenome biased pairs, but no enrichment was identified forBrassica rapasubgenome biased pairs. Furthermore, DNA methylation differences between subgenomes mirrored the observed gene expression bias towards the dominant subgenome in all lines and generations. Many of these differences in gene expression and methylation were also found when comparing the progenitor genomes, suggesting that subgenome dominance is partly related to parental genome differences rather than just a byproduct of allopolyploidisation.

    These findings demonstrate that ‘replaying the evolutionary tape’ in an allopolyploid results in largely repeatable and predictable subgenome expression dominance patterns.

     
    more » « less
  4. Abstract

    The first high-resolution genetic linkage map of the ancestral octoploid (2n = 8x = 56) strawberry species,Fragaria virginiana, was constructed using segregation data obtained from a pentaploid progeny population. This novel mapping population of size 178 was generated by crossing highly heterozygousF. virginianahybrid “LB48” as a paternal parent with diploid (2n = 2x = 14)Fragaria vesca“Hawaii 4”. The LB48 linkage map comprises 6055 markers genotyped on the Axiom® IStraw90 strawberry SNP array. The map consists of 28 linkage groups (LGs) organized into seven homoeology groups of four LGs each, and excludes a small 29th LG of undefined homoeology. One member of each homoeology group was assignable to an “A” subgenome associated with ancestral diploidFragaria vesca, while no other subgenomes were defined. Despite an intriguing discrepancy within homoeology group VI, synteny comparisons with the previously publishedFragaria ×ananassaDA × MO linkage map revealed substantial agreement. Following initial map construction, examination of crossover distributions revealed that six of the total 5162 (=29 chromosomes/individual × 178 individuals) chromosomes making up the data set exhibited abnormally high crossover counts, ranging from 15 to 48 crossovers per chromosome, as compared with the overall mean of 0.66 crossovers per chromosome. Each of these six hyper-recombinant (HypR) chromosomes occurred in a different LG and in a different individual. When calculated upon exclusion of the six HypR chromosomes, the canonical (i.e., broadly representative) LB48 map had 1851 loci distributed over a total map length of 1873 cM, while their inclusion increased the number of loci by 130, and the overall map length by 91 cM. Discovery of these hyper-recombinant chromosomes points to the existence of a sporadically acting mechanism that, if identified and manipulable, could be usefully harnessed for multiple purposes by geneticists and breeders.

     
    more » « less
  5. Abstract

    Polyploidy complicates transcriptional regulation and increases phenotypic diversity in organisms. The dynamics of genetic regulation of gene expression between coresident subgenomes in polyploids remains to be understood. Here we document the genetic regulation of fiber development in allotetraploid cottonGossypium hirsutumby sequencing 376 genomes and 2,215 time-series transcriptomes. We characterize 1,258 genes comprising 36 genetic modules that control staged fiber development and uncover genetic components governing their partitioned expression relative to subgenomic duplicated genes (homoeologs). Only about 30% of fiber quality-related homoeologs show phenotypically favorable allele aggregation in cultivars, highlighting the potential for subgenome additivity in fiber improvement. We envision a genome-enabled breeding strategy, with particular attention to 48 favorable alleles related to fiber phenotypes that have been subjected to purifying selection during domestication. Our work delineates the dynamics of gene regulation during fiber development and highlights the potential of subgenomic coordination underpinning phenotypes in polyploid plants.

     
    more » « less