Camera trapping has revolutionized wildlife ecology and conservation by providing automated data acquisition, leading to the accumulation of massive amounts of camera trap data worldwide. Although management and processing of camera trap‐derived Big Data are becoming increasingly solvable with the help of scalable cyber‐infrastructures, harmonization and exchange of the data remain limited, hindering its full potential. There is currently no widely accepted standard for exchanging camera trap data. The only existing proposal, “Camera Trap Metadata Standard” (CTMS), has several technical shortcomings and limited adoption. We present a new data exchange format, the Camera Trap Data Package (Camtrap DP), designed to allow users to easily exchange, harmonize and archive camera trap data at local to global scales. Camtrap DP structures camera trap data in a simple yet flexible data model consisting of three tables (Deployments, Media and Observations) that supports a wide range of camera deployment designs, classification techniques (
- Award ID(s):
- 2211768
- NSF-PAR ID:
- 10478681
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Remote Sensing in Ecology and Conservation
- ISSN:
- 2056-3485
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Software supply chain compromises are on the rise. From the effects of XCodeGhost to SolarWinds, hackers have identified that targeting weak points in the supply chain allows them to compromise high-value targets such as U.S. government agencies and corporate targets such as Google and Microsoft. Software signing, a promising mitigation for many of these attacks, has seen limited adoption in open-source and enterprise ecosystems. In this paper, we propose Sigstore, a system to provide widespread software signing capabilities. To do so, we designed the system to provide baseline artifact signing capabilities that minimize the adoption barrier for developers. To this end, Sigstore leverages three distinct mechanisms: First, it uses a protocol similar to ACME to authenticate developers through OIDC, tying signatures to existing and widely-used identities. Second, it enables developers to use ephemeral keys to sign their artifacts, reducing the inconvenience and risk of key management. Finally, Sigstore enables user authentication by means of artifact and identity logs, bringing transparency to software signatures. Sigstore is quickly becoming a critical piece of Internet infrastructure with more than 2.2M signatures over critical software such as Kubernetes and Distroless.more » « less
-
null (Ed.)Transposable elements (TEs) are mobile elements capable of introducing genetic changes rapidly. Their importance has been documented in many biological processes, such as introducing genetic instability, altering patterns of gene expression, and accelerating genome evolution. Increasing appreciation of TEs has resulted in a growing number of bioinformatics software to identify insertion events. However, the application of existing tools is limited by either narrow-focused design of the package, too many dependencies on other tools, or prior knowledge required as input files that may not be readily available to all users. Here, we reported a simple pipeline, TEfinder, developed for the detection of new TE insertions with minimal software and input file dependencies. The external software requirements are BEDTools, SAMtools, and Picard. Necessary input files include the reference genome sequence in FASTA format, an alignment file from paired-end reads, existing TEs in GTF format, and a text file of TE names. We tested TEfinder among several evolving populations of Fusarium oxysporum generated through a short-term adaptation study. Our results demonstrate that this easy-to-use tool can effectively detect new TE insertion events, making it accessible and practical for TE analysis.more » « less
-
Abstract As camera trapping has become a standard practice in wildlife ecology, developing techniques to extract additional information from images will increase the utility of generated data. Despite rapid advancements in camera trapping practices, methods for estimating animal size or distance from the camera using captured images have not been standardized. Deriving animal sizes directly from images creates opportunities to collect wildlife metrics such as growth rates or changes in body condition. Distances to animals may be used to quantify important aspects of sampling design such as the effective area sampled or distribution of animals in the camera's field‐of‐view.
We present a method of using pixel measurements in an image to estimate animal size or distance from the camera using a conceptual model in photogrammetry known as the ‘pinhole camera model’. We evaluated the performance of this approach both using stationary three‐dimensional animal targets and in a field setting using live captive reindeer
Rangifer tarandus ranging in size and distance from the camera.We found total mean relative error of estimated animal sizes or distances from the cameras in our simulation was −3.0% and 3.3% and in our field setting was −8.6% and 10.5%, respectively. In our simulation, mean relative error of size or distance estimates were not statistically different between image settings within camera models, between camera models or between the measured dimension used in calculations.
We provide recommendations for applying the pinhole camera model in a wildlife camera trapping context. Our approach of using the pinhole camera model to estimate animal size or distance from the camera produced robust estimates using a single image while remaining easy to implement and generalizable to different camera trap models and installations, thus enhancing its utility for a variety of camera trap applications and expanding opportunities to use camera trap images in novel ways.
-
Abstract We present a Python package geared toward the intuitive analysis and visualization of paleoclimate timeseries,
Pyleoclim . The code is open‐source, object‐oriented, and built upon the standard scientific Python stack, allowing users to take advantage of a large collection of existing and emerging techniques. We describe the code's philosophy, structure, and base functionalities and apply it to three paleoclimate problems: (a) orbital‐scale climate variability in a deep‐sea core, illustrating spectral, wavelet, and coherency analysis in the presence of age uncertainties; (b) correlating a high‐resolution speleothem to a climate field, illustrating correlation analysis in the presence of various statistical pitfalls (including age uncertainties); (c) model‐data confrontations in the frequency domain, illustrating the characterization of scaling behavior. We show how the package may be used for transparent and reproducible analysis of paleoclimate and paleoceanographic datasets, supporting Findable, Accessible, Interoperable, and Reusable software and an open science ethos. The package is supported by an extensive documentation and a growing library of tutorials shared publicly as videos and cloud‐executable Jupyter notebooks, to encourage adoption by new users. -
Disease modelers have been modeling progression of diseases for several decades using tools such as Markov Models or microsimulation. However, they need to address a serious challenge; many models they create are not reproducible. Moreover, there is no proper practice that ensures reproducible models, since modelers rely on loose guidelines that change periodically, rather than well-defined machine-readable standards. The Systems Biology Markup Language (SBML) is one such standard that allows exchange of models amongst different software tools. Recently, the SBML Arrays package has been developed, which extends the standard to allow handling simulation of populations. This paper demonstrates through several abstract examples how microsimulation disease models can be encoded using the SBML Arrays package enabling reproducible disease modeling.more » « less