skip to main content


Title: Contact Pressure‐Guided Wearable Dual‐Channel Bioimpedance Device for Continuous Hemodynamic Monitoring
Abstract

Wearable devices for continuous monitoring of arterial pulse waves have the potential to improve the diagnosis, prognosis, and management of cardiovascular diseases. These pulse wave signals are often affected by the contact pressure between the wearable device and the skin, limiting the accuracy and reliability of hemodynamic parameter quantification. Here, a continuous hemodynamic monitoring device that enables the simultaneous recording of dual‐channel bioimpedance and quantification of pulse wave velocity (PWV) and blood pressure (BP) is reported. The investigations demonstrate the effect of contact pressure on bioimpedance and PWV. The pulsatile bioimpedance magnitude reached its maximum when the contact pressure approximated the mean arterial pressure of the subject. PWV is employed to continuously quantify BP while maintaining comfortable contact pressure for prolonged wear. The mean absolute error and standard deviation of the error compared to the reference value are determined to be 0.1 ± 3.3 mmHg for systolic BP, 1.3 ± 3.7 mmHg for diastolic BP, and −0.4 ± 3.0 mmHg for mean arterial pressure when measurements are conducted in the lying down position. This research demonstrates the potential of wearable dual‐bioimpedance sensors with contact pressure guidance for reliable and continuous hemodynamic monitoring.

 
more » « less
NSF-PAR ID:
10478797
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
9
Issue:
3
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Millions of catheters for invasive arterial pressure monitoring are placed annually in intensive care units, emergency rooms, and operating rooms to guide medical treatment decision-making. Accurate assessment of arterial blood pressure requires an IV pole-attached pressure transducer placed at the same height as a reference point on the patient’s body, typically, the heart. Every time a patient moves, or the bed is adjusted, a nurse or physician must adjust the height of the pressure transducer. There are no alarms to indicate a discrepancy between the patient and transducer height, leading to inaccurate blood pressure measurements.

    Methods

    We present a low-power wireless wearable tracking device that uses inaudible acoustic signals emitted from a speaker array to automatically compute height changes and correct the mean arterial blood pressure. Performance of this device was tested in 26 patients with arterial lines in place.

    Results

    Our system calculates the mean arterial pressure with a bias of 0.19, inter-class correlation coefficients of 0.959 and a median difference of 1.6 mmHg when compared to clinical invasive arterial measurements.

    Conclusions

    Given the increased workload demands on nurses and physicians, our proof-of concept technology may improve accuracy of pressure measurements and reduce the task burden for medical staff by automating a task that previously required manual manipulation and close patient surveillance.

     
    more » « less
  2. Frequent blood pressure monitoring is the key to diagnosis and treatments of many severe diseases. However, the conventional ambulatory methods require patients to carry a blood pressure (BP) monitoring device for 24 h and conduct the measurement every 10--15 min. Despite their extensive usage, wearing the wrist/arm-based BP monitoring device for a long time has a significant impact on users' daily activities. To address the problem, we developed eBP to measure blood pressure (BP) from inside user's ear aiming to minimize the measurement's impact on users' normal activities although maximizing its comfort level. The key novelty of eBP includes (1) a light-based inflatable pulse sensor which goes inside the ear, (2) a digital air pump with a fine controller, and (3) BP estimation algorithms that eliminate the need of blocking the blood flow inside the ear. Through the comparative study of 35 subjects, eBP can achieve the average error of 1.8 mmHg for systolic (high-pressure value) and -3.1 mmHg for diastolic (low-pressure value) with the standard deviation error of 7.2 mmHg and 7.9 mmHg, respectively. These results satisfy the FDA's AAMI standard, which requires a mean error of less than 5 mmHg and a standard deviation of less than 8 mmHg. 
    more » « less
  3. Abstract

    Right ventricular (RV) failure remains a significant clinical burden particularly during the perioperative period surrounding major cardiac surgeries, such as implantation of left ventricular assist devices (LVADs), bypass procedures or valvular surgeries. Device solutions designed to support the function of the RV do not keep up with the pace of development of left‐sided solutions, leaving the RV vulnerable to acute failure in the challenging hemodynamic environments of the perioperative setting. This work describes the design of a biomimetic, soft, conformable sleeve that can be prophylactically implanted on the pulmonary artery to support RV ventricular function during major cardiac surgeries, through afterload reduction and augmentation of flow. Leveraging electrohydraulic principles, a technology is proposed that is non‐blood contacting and obviates the necessity for drivelines by virtue of being electrically powered. In addition, the integration of an adjacent is demonstrate, continuous pressure sensing module to support physiologically adaptive control schemes based on a real‐time biological signal. In vitro experiments conducted in a pulsatile flow‐loop replicating physiological flow and pressure conditions show a reduction of mean pulmonary arterial pressure of 8 mmHg (25% reduction), a reduction in peak systolic arterial pressure of up to 10 mmHg (20% reduction), and a concomitant 19% increase in diastolic pulmonary flow. Computational simulations further predict substantial augmentation of cardiac output as a result of reduced RV ventricular stress and RV dilatation.

     
    more » « less
  4. null (Ed.)
    With the goal of achieving consistence in interpretation of an arterial pulse signal between its vibration model and its hemodynamic relations and improving its physiological implications in our previous study, this paper presents an improved vibration-model-based analysis for estimation of arterial parameters: elasticity (E), viscosity (), and radius (r0) at diastolic blood pressure (DBP) of the arterial wall, from a noninvasively measured arterial pulse signal. The arterial wall is modeled as a unit-mass vibration model, and its spring stiffness (K) and damping coefficient (D) are related to arterial parameters. Key features of a measured pulse signal and its first-order and second-order derivatives are utilized to estimate the values of K and D. These key features are then utilized in hemodynamic relations, where their interpretation is consistent with the vibration model, to estimate the value of r0 from K and D. Consequently, E, , and pulse wave velocity (PWV) are also estimated from K and D. The improved vibration-model-based analysis was conducted on pulse signals of a few healthy subjects measured under two conditions: at-rest and immediately post-exercise. With E, r0, and PWV at-rest as baseline, their changes immediately post-exercise were found to be consistent with the related findings in the literature. Thus, this improved vibration-model-based analysis is validated and contributes to estimation of arterial parameters with better physiological implications, as compared with its previous counterpart. 
    more » « less
  5. Abstract

    In two-thirds of intensive care unit (ICU) patients and 90% of surgical patients, arterial blood pressure (ABP) is monitored non-invasively but intermittently using a blood pressure cuff. Since even a few minutes of hypotension increases the risk of mortality and morbidity, for the remaining (high-risk) patients ABP is measured continuously using invasive devices, and derived values are extracted from the recorded waveforms. However, since invasive monitoring is associated with major complications (infection, bleeding, thrombosis), the ideal ABP monitor should be both non-invasive and continuous. With large volumes of high-fidelity physiological waveforms, it may be possible today to impute a physiological waveform from other available signals. Currently, the state-of-the-art approaches for ABP imputation only aim at intermittent systolic and diastolic blood pressure imputation, and there is no method that imputes the continuous ABP waveform. Here, we developed a novel approach to impute the continuous ABP waveform non-invasively using two continuously-monitored waveforms that are currently part of the standard-of-care, the electrocardiogram (ECG) and photo-plethysmogram (PPG), by adapting a deep learning architecture designed for image segmentation. Using over 150,000 min of data collected at two separate health systems from 463 patients, we demonstrate that our model provides a highly accurate prediction of the continuous ABP waveform (root mean square error 5.823 (95% CI 5.806–5.840) mmHg), as well as the derived systolic (mean difference 2.398 ± 5.623 mmHg) and diastolic blood pressure (mean difference − 2.497 ± 3.785 mmHg) compared to arterial line measurements. Our approach can potentially be used to measure blood pressure continuously and non-invasively for all patients in the acute care setting, without the need for any additional instrumentation beyond the current standard-of-care.

     
    more » « less