skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tracking phenological distributions and interaction potential across life stages
Climate change is shifting the phenological timing, duration, and temporal overlap of interacting species in natural communities, reshaping temporal interaction networks worldwide. Despite much recent progress in documenting these phenological shifts, little is known about how the phenologies of species interactions are tracked across different life history stages. Here we analyze four key phenological traits and the pairwise interaction potential of nine amphibian species for the adult (calling/breeding) and subsequent larval (tadpole) stage at eight different sites over six years. We found few strong correlations among phenological traits within species, but the strength of these correlations varied across species. As a consequence, phenological trait combinations of both stages varied substantially across species without clear signs of multidimensional clustering, indicating a distinct and diverse range of species‐specific phenological strategies. Despite this considerable variation in the phenologies across species, the temporal overlap between species was largely preserved through the two life history stages. Further, we also detected significant correlations among the duration and temporal overlap of interactions with other species across stages in five species, demonstrating that temporal patterns of species interactions are mirrored across life history stages. For these species, these results indicate a strong tracking of phenologies and species interactions across life history stages even in species with complex life cycles where stages occupy completely different environments. This suggests that phenological shifts in one stage can impact the temporal dynamics and structure of interaction networks across developmental stages.  more » « less
Award ID(s):
1655626
PAR ID:
10478840
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Oikos
Volume:
2023
Issue:
8
ISSN:
0030-1299
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate change has changed the phenologies of species worldwide, but it remains unclear how these phenological changes will affect species interactions and the structure of natural communities. Using a novel approach to analyse long‐term data of 66 amphibian species pairs across eight communities, we demonstrate that phenological shifts can significantly alter the interaction potential of coexisting competitors. Importantly, these changes in interaction potential were mediated by non‐uniform, species‐specific shifts in entire phenological distributions and consequently could not be captured by metrics traditionally used to quantify phenological shifts. Ultimately, these non‐uniform shifts in phenological distributions increased the interaction potential for 25% of species pairs (and did not reduce interaction potential for any species pair), altering temporal community structure and potentially increasing interspecific competition. These results demonstrate the potential of phenological shifts to reshape temporal structure of natural communities, emphasising the importance of considering entire phenological distributions of natural populations. 
    more » « less
  2. Phenological shifts are a widely studied consequence of climate change. Little is known, however, about certain critical phenological events, nor about mechanistic links between shifts in different life-history stages of the same organism. Among angiosperms, flowering times have been observed to advance with climate change, but, whether fruiting times shift as a direct consequence of shifting flowering times, or respond differently or not at all to climate change, is poorly understood. Yet, shifts in fruiting could alter species interactions, including by disrupting seed dispersal mutualisms. In the absence of long-term data on fruiting phenology, but given extensive data on flowering, we argue that an understanding of whether flowering and fruiting are tightly linked or respond independently to environmental change can significantly advance our understanding of how fruiting phenologies will respond to warming climates. Through a case study of biotically and abiotically dispersed plants, we present evidence for a potential functional link between the timing of flowering and fruiting. We then propose general mechanisms for how flowering and fruiting life history stages could be functionally linked or independently driven by external factors, and we use our case study species and phenological responses to distinguish among proposed mechanisms in a real-world framework. Finally, we identify research directions that could elucidate which of these mechanisms drive the timing between subsequent life stages. Understanding how fruiting phenology is altered by climate change is essential for all plant species but is particularly critical to sustaining the large numbers of plant species that rely on animal-mediated dispersal, as well as the animals that rely on fruit for sustenance. 
    more » « less
  3. Abstract Effects of global climate change on population persistence are often mediated by life‐history traits of individuals, especially the timing of somatic growth, reproductive development, and reproduction itself. These traits can vary among age groups and between the sexes, a result of differential life‐history tactics and levels of lifetime reproductive investment. Unfortunately, the trait data necessary for revealing sex‐specific breeding behaviors and use of breeding cues over reasonably large geographic areas remain sparse for most taxa. In this study, we assembled and analyzed a new reproductive trait base for the North American deer mouse (Peromyscus maniculatus) from digitized natural history specimens and field censuses. We used the data to reconstruct sex‐specific breeding phenologies and their drivers within and among North American ecoregions. Male and female phenologies varied across the geographic range of this species, with discordance in timing and intensity being highest in regions of lower seasonality (and longer breeding seasons). Reliance on environmental variables as breeding cues also appeared to vary in a sex‐specific manner, being most similar for photoperiod and least similar for temperature (positive male response and negative female response); in addition, model validation indicated that phenological models generalized better for males than for females. Finally, our individual‐level trait data also show that male reproductive investment (quantified as relative testis size) varies across the vastly different abiotic and social (i.e., female breeding) contexts studied here. By harmonizing across a broad set of digital data resources, we demonstrate the potential to uncover drivers of phenological variation within species and inform global change predictions at multiple scales of biological organization. 
    more » « less
  4. Mutualistic interactions between plants and pollinators play an important role in supporting biodiversity and ecosystem stability. However, these interactions are increasingly threatened by climate change, which can alter the phenology of species and cause temporal mismatches between interacting partners. Leveraging historical and contemporary datasets collected more than a century apart, we investigated phenological shifts in plants and pollinators and the impact of changes in temporal overlap of the interaction partners on the persistence of their interactions. We found that generally, the onset of flowering and insect activity started earlier and has lasted longer in the present. We also found that greater temporal overlap of plant and pollinator species predicted a higher probability of persistence of their interaction between time periods. Our results document phenological shifts over a century, and emphasize the importance of maintaining phenological matching for the persistence of plant-pollinator interactions. This illustrates the value of historical data sets for understanding long-term ecological dynamics in the face of accelerating environmental change. 
    more » « less
  5. Abstract Species with different life histories and communities that vary in their seasonal constraints tend to shift their phenology (seasonal timing) differentially in response to climate warming.We investigate how these variable phenological shifts aggregate to influence phenological overlap within communities. Phenological advancements of later season species and extended durations of early season species may increase phenological overlap, with implications for species' interactions such as resource competition.We leverage extensive historic (1958–1960) and recent (2006–2015) weekly survey data for communities of grasshoppers along a montane elevation gradient to assess the impact of climate on shifts in the phenology and abundance distributions of species. We then examine how these responses are influenced by the seasonal timing of species and elevation, and how in aggregate they influence degrees of phenological overlap within communities.In warmer years, abundance distributions shift earlier in the season and become broader. Total abundance responds variably among species and we do not detect a significant response across species. Shifts in abundance distributions are not strongly shaped by species' seasonal timing or sites of variable elevations. The area of phenological overlap increases in warmer years due to shifts in the relative seasonal timing of compared species. Species that overwinter as nymphs increasingly overlap with later season species that advance their phenology. The days of phenological overlap also increase in warm years but the response varies across sites of variable elevation. Our phenological overlap metric based on comparing single events—the dates of peak abundance—does not shift significantly with warming.Phenological shifts are more complex than shifts in single dates such as first occurrence. As abundance distributions shift earlier and become broader in warm years, phenological overlap increases. Our analysis suggests that overall grasshopper abundance is relatively robust to climate and associated phenological shifts but we find that increased overlap can decrease abundance, potentially by strengthening species interactions such as resource competition. 
    more » « less