skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous feedback stabilization of nonlinear control systems by composition operators
The ability to asymptotically stabilize control systems through the use of continuous feedbacks is an important topic of control theory and applications. In this paper, we provide a complete characterization of continuous feedback stabilizability using a new approach that does not involve control Lyapunov functions. To do so, we first develop a slight generalization of feedback stabilization using composition operators and characterize continuous stabilizability in this expanded setting. Employing the obtained characterizations in the more general context, we establish relationships between continuous stabiliza|bility in the conventional sense and in the generalized composition operator sense. This connection allows us to show that the continuousstabilizabilityof a control system is equivalent to thestabilityof an associated system formed from a local section of the vector field inducing the control system. That is, we reduce the question of continuous stabilizability to that ofstability. Moreover, we provide a universal formula describing all possible continuous stabilizing feedbacks for a given system.  more » « less
Award ID(s):
1808978
PAR ID:
10478868
Author(s) / Creator(s):
; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
ESAIM: Control, Optimisation and Calculus of Variations
Volume:
28
ISSN:
1292-8119
Page Range / eLocation ID:
30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a finite-time stable (FTS) position tracking control scheme in discrete time for an unmanned vehicle. The control scheme guarantees discrete-time stability of the feedback system in finite time. This scheme is developed in discrete time as it is more convenient for onboard computer implementation and guarantees stability irrespective of sampling period. Finite-time stability analysis of the discrete-time tracking control is carried out using discrete Lyapunov analysis. This tracking control scheme ensures stable convergence of position tracking errors to the desired trajectory in finite time. The advantages of finite-time stabilization in discrete time over finite-time stabilization of a sampled continuous tracking control system is addressed in this paper by a numerical comparison. This comparison is performed using numerical simulations on continuous and discrete FTS tracking control schemes applied to an unmanned vehicle model. 
    more » « less
  2. This paper presents a finite-time stable (FTS) attitude tracking control scheme in discrete time for an unmanned vehicle. The attitude tracking control scheme guarantees discrete-time stability of the feedback system in finite time. This scheme is developed in discrete time as it is more convenient for onboard computer implementation and guarantees stability irrespective of sampling period. Finite-time stability analysis of the discrete-time tracking control is carried out using discrete Lyapunov analysis. This tracking control scheme ensures stable convergence of attitude tracking errors to the desired trajectory in finite time. The advantages of finite-time stabilization in discrete time over finite-time stabilization of a sampled continuous time tracking control system is addressed in this paper through a numerical comparison. This comparison is performed using numerical simulations on continuous and discrete FTS tracking control schemes applied to an unmanned vehicle model. 
    more » « less
  3. Abstract Feedbacks between plants and soil microbial communities can play an important role in structuring plant communities. However, little is known about how soil legacies caused by environmental disturbances such as drought and extreme precipitation events may affect plant–soil feedback or whether plant–soil feedback operates within species as it does between species. If soil legacies alter plant–soil feedback among genotypes within a plant species, then soil legacies may alter the diversity within plant populations. We conducted a fully factorial pairwise plant–soil feedback experiment to test how precipitation legacies influenced intraspecific plant–soil feedbacks among three genotypes of a dominant grass species,Panicum virgatum.Panicum virgatumexperienced negative intraspecific plant–soil feedback, i.e., genotypes generally performed worse on soil from the same genotype than different genotypes. Soil precipitation legacies reversed the rank order of the strength of negative feedback among the genotypes. Feedback is often positively correlated with plant relative abundance. Therefore, our results suggest that soil precipitation legacies may alter the genotypic composition ofP. virgatumpopulations, favoring genotypes that develop less negative feedback. Changes in intraspecific diversity will likely further affect community structure and ecosystem functioning, and may constrain the ability of populations to respond to future changes in climate. 
    more » « less
  4. Bode integrals of sensitivity and sensitivity-like functions along with complementary sensitivity and complementary sensitivity-like functions are conventionally used for describing performance limitations of a feedback control system. In this paper, we show that in the case when the disturbance is a wide sense stationary process the (complementary) sensitivity Bode integral and the (complementary) sensitivity-like Bode integral are identical. A lower bound of the continuous-time complementary sensitivity-like Bode integral is also derived and examined with the linearized flight-path angle tracking control problem of an F-16 aircraft. 
    more » « less
  5. Feedback control is used by many distributed systems to optimize behaviour. Traditional feedback control algorithms spend significant resources to constantly sense and stabilize a continuous control variable of interest, such as vehicle speed for implementing cruise control, or body temperature for maintaining homeostasis. By contrast, discrete-event feedback (e.g. a server acknowledging when data are successfully transmitted, or a brief antennal interaction when an ant returns to the nest after successful foraging) can reduce costs associated with monitoring a continuous variable; however, optimizing behaviour in this setting requires alternative strategies. Here, we studied parallels between discrete-event feedback control strategies in biological and engineered systems. We found that two common engineering rules—additive-increase, upon positive feedback, and multiplicative-decrease, upon negative feedback, and multiplicative-increase multiplicative-decrease—are used by diverse biological systems, including for regulating foraging by harvester ant colonies, for maintaining cell-size homeostasis, and for synaptic learning and adaptation in neural circuits. These rules support several goals of these systems, including optimizing efficiency (i.e. using all available resources); splitting resources fairly among cooperating agents, or conversely, acquiring resources quickly among competing agents; and minimizing the latency of responses, especially when conditions change. We hypothesize that theoretical frameworks from distributed computing may offer new ways to analyse adaptation behaviour of biology systems, and in return, biological strategies may inspire new algorithms for discrete-event feedback control in engineering. 
    more » « less