skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ant invasion is associated with lower root density and different root distribution of a foundational savanna tree species
Some invasive ants have worldwide distributions and impose substantial impacts on human society and native biodiversity. Yet we know little about how ants impact soil ecosystems in general, much less how soil ecosystems shift when invasive ants move in. We excavated the coarse roots of a monodominant savanna tree in invaded and uninvaded areas to test the hypothesis that the presence of invasive ants would be associated with changes in root distribution and biomass across the landscape. We found that in the presence of invasive ants, trees had a shifted distribution of lateral coarse roots, with proportionally less root biomass near the surface and far from tree stems. In addition, the density of lateral coarse-root biomass was ~ 20% lower for trees within invaded landscapes. Our results suggest that soil-nesting invasive ants can drive important changes in rooting strategy for a tree species that serves a foundational role in the biogeochemical cycles of vertisol savannas.  more » « less
Award ID(s):
1935498 2010075
PAR ID:
10478878
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Biological Invasions
Volume:
25
Issue:
6
ISSN:
1387-3547
Page Range / eLocation ID:
1683 to 1691
Subject(s) / Keyword(s):
Ant acacia invasive soil macrofauna Pheidole megacephala root functional traits soil ecosystem engineering Vachellia drepanolobium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nearly every terrestrial ecosystem hosts invasive ant species, and many of those ant species construct underground nests near roots and/or tend phloem‐feeding hemipterans on plants. We have a limited understanding of how these invasive ant behaviours change photosynthesis, carbohydrate availability and growth of woody plants.We measured photosynthesis, water relations, carbohydrate concentrations and growth for screenhouse‐rearedAcacia drepanolobiumsaplings on which we had manipulated invasivePheidole megacephalaants and nativeCeroplastessp. hemipterans to determine whether and how soil nesting and hemipteran tending by ants affect plant carbon dynamics. In a field study, we also compared leaf counts of vertebrate herbivore‐excluded and ‐exposed saplings in invaded and non‐invaded savannas to examine how ant invasion and vertebrate herbivory are associated with differences in sapling photosynthetic crown size.Though hemipteran infestations are often linked to declines in plant performance, our screenhouse experiment did not find an association between hemipteran presence and differences in plant physiology. However, we did find that soil nesting byP. megacephalaaround screenhouse plants was associated with >58% lower whole‐crown photosynthesis, >31% lower pre‐dawn leaf water potential, >29% lower sucrose concentrations in woody tissues and >29% smaller leaf areas. In the field, sapling crowns were 29% smaller in invaded savannas than in non‐invaded savannas, mimicking screenhouse results.Synthesis. We demonstrate that soil nesting near roots, a common behaviour byPheidole megacephalaand other invasive ants, can directly reduce carbon fixation and storage ofAcacia drepanolobiumsaplings. This mechanism is distinct from the disruption of a native ant mutualism byP. megacephala, which causes similar large declines in carbon fixation for matureA. drepanolobiumtrees.Acacia drepanolobiumalready has extremely low natural rates of recruitment from the sapling to mature stage, and we infer that these negative effects of invasion on saplings potentially curtail recruitment and reduce population growth in invaded areas. Our results suggest that direct interactions between invasive ants and plant roots in other ecosystems may strongly influence plant carbon fixation and storage. 
    more » « less
  2. Objectives:Fine roots significantly influence ecosystem-scale cycling of nutrients, carbon (C), and water, yet there is limited understanding of how fine root traits vary across and within tropical forests, some of Earth's most C-rich ecosystems. The biomass of fine roots can impact soil carbon storage, as root mortality is a primary source of new carbon to soils. A positive relationship has been observed between fine root biomass and soil carbon stocks in Panama (Cusack et al 2018). Beyond biomass, root characteristics like specific root length (SRL) could also influence soil carbon, as roots with higher SRL are less dense and thinner, potentially decomposing more easily or promoting soil aggregation. Understanding the effects of root morphology and tissue quality on soil carbon storage and with soil properties in general can improve predictions of landscape-scale carbon patterns. We aggregated new data of root biomass, morphology and nutrient content at 0-10 cm, 10-20 cm, 20-50 cm and 50-100 cm depth increments across four distinct lowland Panamanian forests and paired with already published datasets (Cusack et al 2018; Cusack and Turner 2020) of soil chemistry from the same sites and soil depths to explore relationship between soil carbon stocks and root characteristics.Datasets included:The datasets provided include .csv and .xlsx files for fine root characteristics and soil chemistry from four different forests across 0-10 cm, 10-20 cm, 20-50 cm, and 50-100 cm depth increments. Root characteristics include live fine root biomass, dead fine root biomass, coarse root biomass, specific root length, root diameter, root tissue density, specific root area, root %N, root %C, and root C/N ratio. Soil chemistry data includes total carbon (TC), dissolved organic carbon (DOC), bulk density, total phosphorus (TP), available phosphorus (AEM Pi), and various Mehlich-extractable elements such as aluminum, calcium, iron, potassium, manganese, phosphorus, and zinc. Nitrogen content measures include ammonium, nitrate, total dissolved nitrogen (TDN), dissolved inorganic nitrogen (DIN), and dissolved organic nitrogen (DON). The dataset also includes total exchangeable bases (TEB) and effective cation exchange capacity (ECEC) in both centimoles of charge per kilogram and micromoles of charge per gram. The soil chemistry data was obtained from Cusack et al (2018) and Cusack and Turner (2020) and paired with root characteristics data for the same depth increments and sites. Additionally, a .kml file is provided with coordinates for all 32 plots included in the study across four forests (n = 8 plots per site). Root data was averaged across these 8 plots per site and soil data was collected in one pit in each site. This dataset serves as baseline data before a throughfall exclusion experiment, Panama Rainforest Changes with Experimental Drying (PARCHED), was implemented. No special software is needed to open these files. 
    more » « less
  3. Abstract Unlike trees, shrubs (i.e., multiple-stemmed woody plants) do not need evenly spaced large diameter structural roots and therefore should be more responsive to heterogeneous distributions of soil resources and spread further per unit belowground biomass. We therefore hypothesized that compared to trees, shrubs respond more to asymmetric distributions of nutrients, reach nutrient-rich patches of soil faster, and do so with less below-ground biomass. To test these three hypotheses, we planted individual seedlings of shrubs (Cornus racemosa, Rhus glabra, andViburnum dentatum) and trees (Acer rubrum, Betula populifolia, andFraxinus americana) in the centers of sand-filled rectangular boxes. In one direction we created a stepwise gradient of increasing nutrients with slow-release fertilizer; in the other direction, no fertilizer was added. Seedlings were harvested when their first root reached the plexiglass-covered fertilized end of their box; time taken, above-ground biomass, and below-ground biomass per nutrient segment were determined. Shrubs and trees did not consistently differ in precision of root foraging (i.e., the ratio of biomass in the fertilized and unfertilized soil) or in rates (g/day) and efficiencies (cm/day) of lateral root growth. Interspecific variation appeared more related to species’ habitats than to growth form. The fastest and most efficient roots were produced by the shrub (R. glabra) and the tree (B. populifolia), both characteristic of poor and heterogeneous soils. Root foraging byR. glabrawas also facilitated by rapid rhizomatous expansion. 
    more » « less
  4. Abstract In savannas, partitioning of below‐ground resources by depth could facilitate tree–grass coexistence and shape vegetation responses to changing rainfall patterns. However, most studies assessing tree versus grass root‐niche partitioning have focused on one or two sites, limiting generalization about how rainfall and soil conditions influence the degree of rooting overlap across environmental gradients.We used two complementary stable isotope techniques to quantify variation (a) in water uptake depths and (b) in fine‐root biomass distributions among dominant trees and grasses at eight semi‐arid savanna sites in Kruger National Park, South Africa. Sites were located on contrasting soil textures (clayey basaltic soils vs. sandy granitic soils) and paired along a gradient of mean annual rainfall.Soil texture predicted variation in mean water uptake depths and fine‐root allocation. While grasses maintained roots close to the surface and consistently used shallow water, trees on sandy soils distributed roots more evenly across soil depths and used deeper soil water, resulting in greater divergence between tree and grass rooting on sandy soils. Mean annual rainfall predicted some variation among sites in tree water uptake depth, but had a weaker influence on fine‐root allocation.Synthesis. Savanna trees overlapped more with shallow‐rooted grasses on clayey soils and were more distinct in their use of deeper soil layers on sandy soils, consistent with expected differences in infiltration and percolation. These differences, which could allow trees to escape grass competition more effectively on sandy soils, may explain observed differences in tree densities and rates of woody encroachment with soil texture. Differences in the degree of root‐niche separation could also drive heterogeneous responses of savanna vegetation to predicted shifts in the frequency and intensity of rainfall. 
    more » « less
  5. Abstract Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old‐growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi‐deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water‐stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions. 
    more » « less