skip to main content


This content will become publicly available on September 5, 2024

Title: Stimuli-Responsive Surface Ligands for Direct Lithography of Functional Inorganic Nanomaterials
Colloidal nanocrystals (NCs) have emerged as a diverse class of materials with tunable composition, size, shape, and surface chemistry. From their facile syntheses to unique optoelectronic properties, these solution-processed nanomaterials are a promising alternative to materials grown as bulk crystals or by vapor-phase methods. However, the integration of colloidal nanomaterials in real-world devices is held back by challenges in making patterned NC films with the resolution, throughput, and cost demanded by device components and applications. Therefore, suitable approaches to pattern NCs need to be established to aid the transition from individual proof-of-concept NC devices to integrated and multiplexed technological systems. In this Account, we discuss the development of stimuli-sensitive surface ligands that enable NCs to be patterned directly with good pattern fidelity while retaining desirable properties. We focus on rationally selected ligands that enable changes in the NC dispersibility by responding to light, electron beam, and/or heat. First, we summarize the fundamental forces between colloidal NCs and discuss the principles behind NC stabilization/destabilization. These principles are applied to understanding the mechanisms of the NC dispersibility change upon stimuli-induced ligand modifications. Six ligand-based patterning mechanisms are introduced: ligand cross-linking, ligand decomposition, ligand desorption, in situ ligand exchange, ion/ligand binding, and ligand-aided increase of ionic strength. We discuss examples of stimuli-sensitive ligands that fall under each mechanism, including their chemical transformations, and address how these ligands are used to pattern either sterically or electrostatically stabilized colloidal NCs. Following that, we explain the rationale behind the exploration of different types of stimuli, as well as the advantages and disadvantages of each stimulus. We then discuss relevant figures-of-merit that should be considered when choosing a particular ligand chemistry or stimulus for patterning NCs. These figures-of-merit pertain to either the pattern quality (e.g., resolution, edge and surface roughness, layer thickness), or to the NC material quality (e.g., photo/electro-luminescence, electrical conductivity, inorganic fraction). We outline the importance of these properties and provide insights on optimizing them. Both the pattern quality and NC quality impact the performance of patterned NC devices such as field-effect transistors, light-emitting diodes, color-conversion pixels, photodetectors, and diffractive optical elements. We also give examples of proof-of-concept patterned NC devices and evaluate their performance. Finally, we provide an outlook on further expanding the chemistry of stimuli-sensitive ligands, improving the NC pattern quality, progress toward 3D printing, and other potential research directions. Ultimately, we hope that the development of a patterning toolbox for NCs will expedite their implementation in a broad range of applications.  more » « less
Award ID(s):
1905290
NSF-PAR ID:
10478895
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Accounts of Chemical Research
Volume:
56
Issue:
17
ISSN:
0001-4842
Page Range / eLocation ID:
2286 to 2297
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Manipulations of nanocrystal (NC) surfaces have propelled the applications of colloidal NCs across various fields such as bioimaging, catalysis, electronics, and sensing applications. In this Feature Article, we discuss the surface chemistry of colloidal NCs, with an emphasis on semiconductor quantum dots, and the binding motifs for various ligands that coordinate NC surfaces. We present isothermal titration calorimetry (ITC) as a viable technique for studying the thermodynamics of the ligand association and exchange at NC surfaces by discussing its principles of operation and highlighting results obtained to date. We give an in-depth description of various thermodynamic models that can be used to interpret NC–ligand interactions as measured not only by ITC, but also by NMR, fluorescence quenching, and fluorescence anisotropy techniques. Understanding the complexity of NC surface–ligand interactions can provide a wide range of avenues to tune their properties for desired applications. 
    more » « less
  2. Direct optical lithography presents a promising patterning method for colloidal quantum dots (QDs). However, additional care needs to be taken to prevent deterioration of the optical properties of QDs upon patterning, especially for InP-based QDs. This study proposes an efficient method for high-resolution patterning of InP-based QDs using a photoacid generator while preserving their optical properties. Specifically, our solid-state ligand exchange strategy, replacing chloride ligands with long-chain amine/carboxylate pair ligands, successfully recovered the photoluminescence quantum yield (PLQY) of the patterned InP-based QD films to ∼67% of the original PLQY. Upon examination of the origins of the PLQY reduction during patterning, we concluded that the formation of deep traps caused by the exchanged chloride ligands was the primary cause. Finally, we fabricated high-resolution (feature size: 1 μm), multicolored patterns of InP-based QDs, thereby demonstrating the potential of the proposed patterning method for next-generation high-resolution displays and optoelectronic devices. 
    more » « less
  3. Abstract

    Precise patterning of quantum dot (QD) layers is an important prerequisite for fabricating QD light‐emitting diode (QLED) displays and other optoelectronic devices. However, conventional patterning methods cannot simultaneously meet the stringent requirements of resolution, throughput, and uniformity of the pattern profile while maintaining a high photoluminescence quantum yield (PLQY) of the patterned QD layers. Here, a specially designed nanocrystal ink is introduced, “photopatternable emissive nanocrystals” (PENs), which satisfies these requirements. Photoacid generators in the PEN inks allow photoresist‐free, high‐resolution optical patterning of QDs through photochemical reactions and in situ ligand exchange in QD films. Various fluorescence and electroluminescence patterns with a feature size down to ≈1.5 µm are demonstrated using red, green, and blue PEN inks. The patterned QD films maintain ≈75% of original PLQY and the electroluminescence characteristics of the patterned QLEDs are comparable to thopse of non‐patterned control devices. The patterning mechanism is elucidated by in‐depth investigation of the photochemical transformations of the photoacid generators and changes in the optical properties of the QDs at each patterning step. This advanced patterning method provides a new way for additive manufacturing of integrated optoelectronic devices using colloidal QDs.

     
    more » « less
  4. Abstract

    Lead halide perovskite (LHP) nanocrystals (NCs) have recently garnered enhanced development efforts from research disciplines owing to their superior optical and optoelectronic properties. These materials, however, are unlike conventional quantum dots, because they possess strong ionic character, labile ligand coverage, and overall stability issues. As a result, the system as a whole is highly dynamic and can be affected by slight changes of particle surface environment. Specifically, the surface ligand shell of LHP NCs has proven to play imperative roles throughout the lifetime of a LHP NC. Recent advances in engineering and understanding the roles of surface ligand shells from initial synthesis, through postsynthetic processing and device integration, finally to application performances of colloidal LHP NCs are covered here.

     
    more » « less
  5. null (Ed.)
    Ligand-protected metal nanoclusters (NCs) are organic–inorganic nanostructures, exhibiting high stability at specific “magic size” compositions and tunable properties that make them promising candidates for a wide range of nanotechnology-based applications. Synthesis and characterization of these nanostructures has been achieved with atomic precision, offering great opportunities to study the origin of new physicochemical property emergence at the nanoscale using theory and computation. In this Frontier article, we highlight the recent advances in the field of ligand-protected metal NCs, focusing on stability theories on monometallic and heterometal doped NCs, and NC structure prediction. Furthermore, we discuss current challenges on predicting previously undiscovered NCs and propose future steps to advance the field through applying first principles calculations, machine learning, and data-science-based approaches. 
    more » « less