skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on January 1, 2025

Title: Representing model uncertainties in brittle fracture simulations
This work focuses on the representation of model-form uncertainties in phase-field models of brittle fracture. Such uncertainties can arise from the choice of the degradation function for instance, and their consideration has been unaddressed to date. The stochastic modeling framework leverages recent developments related to the analysis of nonlinear dynamical systems and relies on the construction of a stochastic reduced-order model. In the latter, a POD-based reduced-order basis is randomized using Riemannian projection and retraction operators, as well as an information-theoretic formulation enabling proper concentration in the convex hull defined by a set of model proposals. The model thus obtained is mathematically admissible in the almost sure sense and involves a low-dimensional hyperparameter, the calibration of which is facilitated through the formulation of a quadratic programming problem. The relevance of the modeling approach is further assessed on one- and two-dimensional applications. It is shown that model uncertainties can be efficiently captured and propagated to macroscopic quantities of interest. An extension based on localized randomization is also proposed to handle the case where the forward simulation is highly sensitive to sample localization. This work constitutes a methodological development allowing phase-field predictions to be endowed with statistical measures of confidence, accounting for the variability induced by modeling choices.  more » « less
Award ID(s):
1942928 2022040
NSF-PAR ID:
10478902
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Computer Methods in Applied Mechanics and Engineering
Volume:
418
Issue:
PB
ISSN:
0045-7825
Page Range / eLocation ID:
116575
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A technique based on the Wiener path integral (WPI) is developed for determining the stochastic response of diverse nonlinear systems with fractional derivative elements. Specifically, a reduced-order WPI formulation is proposed, which can be construed as an approximation-free dimension reduction approach that renders the associated computational cost independent of the total number of stochastic dimensions of the problem. In fact, the herein developed technique can determine, directly, any lower-dimensional joint response probability density function corresponding to a subset only of the response vector components. This is done by utilizing an appropriate combination of fixed and free boundary conditions in the related variational, functional minimization, problem. Notably, the reduced-order WPI formulation is particularly advantageous for problems where the interest lies in few only specific degrees-of-freedom whose stochastic response is critical for the design and optimization of the overall system. An indicative numerical example is considered pertaining to a stochastically excited tuned mass-damper-inerter nonlinear system with a fractional derivative element. Comparisons with relevant Monte Carlo simulation data demonstrate the accuracy and computational efficiency of the technique. 
    more » « less
  2. Abstract

    Many geo‐engineering applications, for example, enhanced geothermal systems, rely on hydraulic fracturing to enhance the permeability of natural formations and allow for sufficient fluid circulation. Over the past few decades, the phase‐field method has grown in popularity as a valid approach to modeling hydraulic fracturing because of the ease of handling complex fracture propagation geometries. However, existing phase‐field methods cannot appropriately capture nucleation of hydraulic fractures because their formulations are solely energy‐based and do not explicitly take into account the strength of the material. Thus, in this work, we propose a novel phase‐field formulation for hydraulic fracturing with the main goal of modeling fracture nucleation in porous media, for example, rocks. Built on the variational formulation of previous phase‐field methods, the proposed model incorporates the material strength envelope for hydraulic fracture nucleation through two important steps: (i) an external driving force term, included in the damage evolution equation, that accounts for the material strength; (ii) a properly designed damage function that defines the fluid pressure contribution on the crack driving force. The comparison of numerical results for two‐dimensional test cases with existing analytical solutions demonstrates that the proposed phase‐field model can accurately model both nucleation and propagation of hydraulic fractures. Additionally, we present the simulation of hydraulic fracturing in a three‐dimensional domain with various stress conditions to demonstrate the applicability of the method to realistic scenarios.

     
    more » « less
  3. Abstract

    Modern performance earthquake engineering practices frequently require a large number of time‐consuming non‐linear time‐history simulations to appropriately address excitation and structural uncertainties when estimating engineering demand parameter (EDP) distributions. Surrogate modeling techniques have emerged as an attractive tool for alleviating such high computational burden in similar engineering problems. A key challenge for the application of surrogate models in earthquake engineering context relates to the aleatoric variability associated with the seismic hazard. This variability is typically expressed as high‐dimensional or non‐parametric uncertainty, and so cannot be easily incorporated within standard surrogate modeling frameworks. Rather, a surrogate modeling approach that can directly approximate the full distribution of the response output is warranted for this application. This approach needs to additionally address the fact that the response variability may change as input parameter changes, yielding a heteroscedastic behavior. Stochastic emulation techniques have emerged as a viable solution to accurately capture aleatoric uncertainties in similar contexts, and recent work by the second author has established a framework to accommodate this for earthquake engineering applications, using Gaussian Process (GP) regression to predict the EDP response distribution. The established formulation requires for a portion of the training samples the replication of simulations for different descriptions of the aleatoric uncertainty. In particular, the replicated samples are used to build a secondary GP model to predict the heteroscedastic characteristics, and these predictions are then used to formulate the primary GP that produces the full EDP distribution. This practice, however, has two downsides: it always requires minimum replications when training the secondary GP, and the information from the non‐replicated samples is utilized only for the primary GP. This research adopts an alternative stochastic GP formulation that can address both limitations. To this end, the secondary GP is trained by measuring the square of sample deviations from the mean instead of the crude sample variances. To establish the primitive mean estimates, another auxiliary GP is introduced. This way, information from all replicated and non‐replicated samples is fully leveraged for estimating both the EDP distribution and the underlying heteroscedastic behavior, while formulation accommodates an implementation using no replications. The case study examples using three different stochastic ground motion models demonstrate that the proposed approach can address both aforementioned challenges.

     
    more » « less
  4. Summary

    This paper presents an approach for efficient uncertainty analysis (UA) using an intrusive generalized polynomial chaos (gPC) expansion. The key step of the gPC‐based uncertainty quantification(UQ) is the stochastic Galerkin (SG) projection, which can convert a stochastic model into a set of coupled deterministic models. The SG projection generally yields a high‐dimensional integration problem with respect to the number of random variables used to describe the parametric uncertainties in a model. However, when the number of uncertainties is large and when the governing equation of the system is highly nonlinear, the SG approach‐based gPC can be challenging to derive explicit expressions for the gPC coefficients because of the low convergence in the SG projection. To tackle this challenge, we propose to use a bivariate dimension reduction method (BiDRM) in this work to approximate a high‐dimensional integral in SG projection with a few one‐ and two‐dimensional integrations. The efficiency of the proposed method is demonstrated with three different examples, including chemical reactions and cell signaling. As compared to other UA methods, such as the Monte Carlo simulations and nonintrusive stochastic collocation (SC), the proposed method shows its superior performance in terms of computational efficiency and UA accuracy.

     
    more » « less
  5. null (Ed.)
    Tear film plays a key role in protecting the cornea surface against contaminations and dry eye syndrome which can lead to symptoms of discomfort, visual trouble, and tear film instability with the potential to damage the ocular surface. In this paper, coupled nonlinear partial differential equations of the fourth order proposed by Aydemir et al. to describe the evolution of tear film dynamics are considered. These equations are of Benney type and known to suffer from unbounded behavior and lack of a global attractor. The objective here is to identify a reduced order modeling framework with the potential to be used as a basis for control in future work using smart tears with a surfactant that can modify the surface tension to prevent tear film breakup. Since the dynamics are infinite dimensional and nonlinear, a reduced order model based on the proper orthogonal decomposition (POD) is developed, analyzed, and compared to the full order model. Numerical simulations illustrate that only a small number of POD modes are required to accurately capture the tear film dynamics allowing for the full partial differential model to be represented as a low-dimensional set of coupled ordinary differential equations. 
    more » « less