skip to main content


Title: Seismic arrival-time picking on distributed acoustic sensing data using semi-supervised learning
Abstract

Distributed Acoustic Sensing (DAS) is an emerging technology for earthquake monitoring and subsurface imaging. However, its distinct characteristics, such as unknown ground coupling and high noise level, pose challenges to signal processing. Existing machine learning models optimized for conventional seismic data struggle with DAS data due to its ultra-dense spatial sampling and limited manual labels. We introduce a semi-supervised learning approach to address the phase-picking task of DAS data. We use the pre-trained PhaseNet model to generate noisy labels of P/S arrivals in DAS data and apply the Gaussian mixture model phase association (GaMMA) method to refine these noisy labels and build training datasets. We develop PhaseNet-DAS, a deep learning model designed to process 2D spatio-temporal DAS data to achieve accurate phase picking and efficient earthquake detection. Our study demonstrates a method to develop deep learning models for DAS data, unlocking the potential of integrating DAS in enhancing earthquake monitoring.

 
more » « less
Award ID(s):
1848166
NSF-PAR ID:
10479007
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Accurate and (near) real-time earthquake monitoring provides the spatial and temporal behaviors of earthquakes for understanding the nature of earthquakes, and also helps in regional seismic hazard assessments and mitigations. Because of the increase in both the quality and quantity of seismic data, an automated earthquake monitoring system is needed. Most of the traditional methods for detecting earthquake signals and picking phases are based on analyses of features in recordings of an individual earthquake and/or their differences from background noises. When seismicity is high, the seismograms are complicated, and, therefore, traditional analysis methods often fail. With the development of machine learning algorithms, earthquake signal detection and seismic phase picking can be more accurate using the features obtained from a large amount of earthquake recordings. We have developed an attention recurrent residual U-Net algorithm, and used data augmentation techniques to improve the accuracy of earthquake detection and seismic phase picking on complex seismograms that record multiple earthquakes. The use of probability functions of P and S arrivals and potential P and S arrival pairs of earthquakes can increase the computational efficiency and accuracy of backprojection for earthquake monitoring in large areas. We applied our workflow to monitor the earthquake activity in southern California during the 2019 Ridgecrest sequence. The distribution of earthquakes determined by our method is consistent with that in the Southern California Earthquake Data Center (SCEDC) catalog. In addition, the number of earthquakes in our catalog is more than three times that of the SCEDC catalog. Our method identifies additional earthquakes that are close in origin times and/or locations, and are not included in the SCEDC catalog. Our algorithm avoids misidentification of seismic phases for earthquake location. In general, our algorithm can provide reliable earthquake monitoring on a large area, even during a high seismicity period. 
    more » « less
  2. null (Ed.)
    Abstract Seismograms are convolution results between seismic sources and the media that seismic waves propagate through, and, therefore, the primary observations for studying seismic source parameters and the Earth interior. The routine earthquake location and travel-time tomography rely on accurate seismic phase picks (e.g., P and S arrivals). As data increase, reliable automated seismic phase-picking methods are needed to analyze data and provide timely earthquake information. However, most traditional autopickers suffer from low signal-to-noise ratio and usually require additional efforts to tune hyperparameters for each case. In this study, we proposed a deep-learning approach that adapted soft attention gates (AGs) and recurrent-residual convolution units (RRCUs) into the backbone U-Net for seismic phase picking. The attention mechanism was implemented to suppress responses from waveforms irrelevant to seismic phases, and the cooperating RRCUs further enhanced temporal connections of seismograms at multiple scales. We used numerous earthquake recordings in Taiwan with diverse focal mechanisms, wide depth, and magnitude distributions, to train and test our model. Setting the picking errors within 0.1 s and predicted probability over 0.5, the AG with recurrent-residual convolution unit (ARRU) phase picker achieved the F1 score of 98.62% for P arrivals and 95.16% for S arrivals, and picking rates were 96.72% for P waves and 90.07% for S waves. The ARRU phase picker also shown a great generalization capability, when handling unseen data. When applied the model trained with Taiwan data to the southern California data, the ARRU phase picker shown no cognitive downgrade. Comparing with manual picks, the arrival times determined by the ARRU phase picker shown a higher consistency, which had been evaluated by a set of repeating earthquakes. The arrival picks with less human error could benefit studies, such as earthquake location and seismic tomography. 
    more » « less
  3. Abstract

    Distributed Acoustic Sensing (DAS) is a promising technique to improve the rapid detection and characterization of earthquakes. Previous DAS studies mainly focus on the phase information but less on the amplitude information. In this study, we compile earthquake data from two DAS arrays in California, USA, and one submarine array in Sanriku, Japan. We develop a data‐driven method to obtain the first scaling relation between DAS amplitude and earthquake magnitude. Our results reveal that the earthquake amplitudes recorded by DAS in different regions follow a similar scaling relation. The scaling relation can provide a rapid earthquake magnitude estimation and effectively avoid uncertainties caused by the conversion to ground motions. Our results show that the scaling relation appears transferable to new regions with calibrations. The scaling relation highlights the great potential of DAS in earthquake source characterization and early warning.

     
    more » « less
  4. Abstract

    Seismic phase association is a fundamental task in seismology that pertains to linking together phase detections on different sensors that originate from a common earthquake. It is widely employed to detect earthquakes on permanent and temporary seismic networks and underlies most seismicity catalogs produced around the world. This task can be challenging because the number of sources is unknown, events frequently overlap in time, or can occur simultaneously in different parts of a network. We present PhaseLink, a framework based on recent advances in deep learning for grid‐free earthquake phase association. Our approach learns to link phases together that share a common origin and is trained entirely on millions of synthetic sequences ofPandSwave arrival times generated using a 1‐D velocity model. Our approach is simple to implement for any tectonic regime, suitable for real‐time processing, and can naturally incorporate errors in arrival time picks. Rather than tuning a set of ad hoc hyperparameters to improve performance, PhaseLink can be improved by simply adding examples of problematic cases to the training data set. We demonstrate the state‐of‐the‐art performance of PhaseLink on a challenging sequence from southern California and synthesized sequences from Japan designed to test the point at which the method fails. For the examined data sets, PhaseLink can precisely associate phases to events that occur only ∼12 s apart in origin time. This approach is expected to improve the resolution of seismicity catalogs, add stability to real‐time seismic monitoring, and streamline automated processing of large seismic data sets.

     
    more » « less
  5. Although seismic industry has been investigating decades on solving the first break picking problems automatically, there are still enormous challenges during the investigation. Even till today, there are not solid solutions to avoid human labors to manually pick data by geophysicists. With the raise of deep learning and powerful hardware, many of those challenges can be overcome. In this work, we propose a deep semi-supervised neural network to achieve automatic picking for the first break in seismic data. The network is designed to perform with both unlabeled data and a limited amount of real data with labels. Initial feature representation is learning in a discriminative unsupervised manner on real datasets without labels. Since no assumptions are made with regard to the difference of underlying distributions between the synthetic and real data, our model has more marginal gain to compensate for the distribution drifting compare to the supervised learning models. In addition, the network is capable of updating itself through continuous learning. The system is able to identify labeling anomalies onsite and update the model through active learning. In simulation, we show our proposed deep semi-supervised neural network can achieve high accuracy on first break picking. Comparing with the supervised neural networks, our proposed network shows the advantage on using both labeled and unlabeled data set to achieve higher accuracy. 
    more » « less