Event cameras capture the world at high time resolution and with minimal bandwidth requirements. However, event streams, which only encode changes in brightness, do not contain sufficient scene information to support a wide variety of downstream tasks. In this work, we design generalized event cameras that inherently preserve scene intensity in a bandwidth-efficient manner. We generalize event cameras in terms of when an event is generated and what information is transmitted. To implement our designs, we turn to single-photon sensors that provide digital access to individual photon detections; this modality gives us the flexibility to realize a rich space of generalized event cameras. Our single-photon event cameras are capable of high-speed, high-fidelity imaging at low readout rates. Consequently, these event cameras can support plug-and-play downstream inference, without capturing new event datasets or designing specialized event-vision models. As a practical implication, our designs, which involve lightweight and near-sensor-compatible computations, provide a way to use single-photon sensors without exorbitant bandwidth costs.
more »
« less
CASPI: collaborative photon processing for active single-photon imaging
Abstract Image sensors capable of capturing individual photons have made tremendous progress in recent years. However, this technology faces a major limitation. Because they capture scene information at the individual photon level, the raw data is sparse and noisy. Here we propose CASPI: Collaborative Photon Processing for Active Single-Photon Imaging, a technology-agnostic, application-agnostic, and training-free photon processing pipeline for emerging high-resolution single-photon cameras. By collaboratively exploiting both local and non-local correlations in the spatio-temporal photon data cubes, CASPI estimates scene properties reliably even under very challenging lighting conditions. We demonstrate the versatility of CASPI with two applications: LiDAR imaging over a wide range of photon flux levels, from a sub-photon to high ambient regimes, and live-cell autofluorescence FLIM in low photon count regimes. We envision CASPI as a basic building block of general-purpose photon processing units that will be implemented on-chip in future single-photon cameras.
more »
« less
- PAR ID:
- 10479176
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quantum ghost imaging (QGI) leverages correlations between entangled photon pairs to reconstruct an image using light that has never physically interacted with an object. Despite extensive research interest, this technique has long been hindered by slow acquisition speeds, due to the use of raster-scanned detectors or the slow response of intensified cameras. Here, we utilize a single-photon-sensitive time-stamping camera to perform QGI at ultra-low-light levels with rapid data acquisition and processing times, achieving high-resolution and high-contrast images in under 1 min. Our work addresses the trade-off between image quality, optical power, data acquisition time, and data processing time in QGI, paving the way for practical applications in biomedical and quantum-secured imaging.more » « less
-
We present a method for reconstructing 3D shape of arbitrary Lambertian objects based on measurements by miniature, energy-efficient, low-cost single-photon cameras. These cameras, operating as time resolved image sensors, illuminate the scene with a very fast pulse of diffuse light and record the shape of that pulse as it returns back from the scene at a high temporal resolution. We propose to model this image formation process, account for its non-idealities, and adapt neural rendering to reconstruct 3D geometry from a set of spatially distributed sensors with known poses. We show that our approach can successfully recover complex 3D shapes from simulated data. We further demonstrate 3D object reconstruction from real-world captures, utilizing measurements from a commodity proximity sensor. Our work draws a connection between image-based modeling and active range scanning and is a step towards 3D vision with single-photon cameras.more » « less
-
null (Ed.)Single-photon avalanche diodes (SPADs) are a rapidly developing image sensing technology with extreme low-light sensitivity and picosecond timing resolution. These unique capabilities have enabled SPADs to be used in applications like LiDAR, non-line-of-sight imaging and fluorescence microscopy that require imaging in photon-starved scenarios. In this work we harness these capabilities for dealing with motion blur in a passive imaging setting in low illumination conditions. Our key insight is that the data captured by a SPAD array camera can be represented as a 3D spatio-temporal tensor of photon detection events which can be integrated along arbitrary spatio-temporal trajectories with dynamically varying integration windows, depending on scene motion. We propose an algorithm that estimates pixel motion from photon timestamp data and dynamically adapts the integration windows to minimize motion blur. Our simulation results show the applicability of this algorithm to a variety of motion profiles including translation, rotation and local object motion. We also demonstrate the real-world feasibility of our method on data captured using a 32x32 SPAD camera.more » « less
-
Single-photon sensitive image sensors have recently gained popularity in passive imaging applications where the goal is to capture photon flux (brightness) values of different scene points in the presence of challenging lighting conditions and scene motion. Recent work has shown that high-speed bursts of single-photon timestamp information captured using a single-photon avalanche diode camera can be used to estimate and correct for scene motion thereby improving signal-to-noise ratio and reducing motion blur artifacts. We perform a comparison of various design choices in the processing pipeline used for noise reduction, motion compensation, and upsampling of single-photon timestamp frames. We consider various pixelwise noise reduction techniques in combination with state-of-the-art deep neural network upscaling algorithms to super-resolve intensity images formed with single-photon timestamp data. We explore the trade space of motion blur and signal noise in various scenes with different motion content. Using real data captured with a hardware prototype, we achieved superresolution reconstruction at frame rates up to 65.8 kHz (native sampling rate of the sensor) and captured videos of fast-moving objects. The best reconstruction is obtained with the motion compensation approach, which achieves a structural similarity (SSIM) of about 0.67 for fast moving rigid objects. We are able to reconstruct subpixel resolution. These results show the relative superiority of our motion compensation compared to other approaches that do not exceed an SSIM of 0.5.more » « less
An official website of the United States government

