skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: AXR1 modulates trichome morphogenesis through mediating ROP2 stability in Arabidopsis
SUMMARY

Cell differentiation and morphogenesis are crucial for the establishment of diverse cell types and organs in multicellular organisms. Trichome cells offer an excellent paradigm for dissecting the regulatory mechanisms of plant cell differentiation and morphogenesis due to their unique growth characteristics. Here, we report the isolation of an Arabidopsis mutant,aberrantlybranchedtrichome 3–1(abt3‐1), with a reduced trichome branching phenotype. Positional cloning and molecular complementation experiments confirmed thatabt3‐1is a new mutant allele ofAuxin resistant 1(AXR1), which encodes the N‐terminal half of ubiquitin‐activating enzyme E1 and functions in auxin signaling pathway. Meanwhile, we found that transgenic plants expressing constitutively active version ofROP2(CA‐ROP2) caused a reduction of trichome branches, resembling that ofabt3‐1. ROP2 is a member of Rho GTPase of plants (ROP) family, serving as versatile signaling switches involved in a range of cellular and developmental processes. Our genetic and biochemical analyses showedAXR1genetically interacted withROP2and mediated ROP2 protein stability. The loss ofAXR1aggravated the trichome defects ofCA‐ROP2and induced the accumulation of steady‐state ROP2. Consistently, elevatedAXR1expression levels suppressedROP2expression and partially rescued trichome branching defects inCA‐ROP2plants. Together, our results presented a new mutant allele ofAXR1, uncovered the effects ofAXR1andROP2during trichome development, and revealed a pathway ofROP2‐mediated regulation of plant cell morphogenesis in Arabidopsis.

 
more » « less
Award ID(s):
1923589
PAR ID:
10479188
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
WILEY
Date Published:
Journal Name:
The Plant Journal
Volume:
116
Issue:
3
ISSN:
0960-7412
Page Range / eLocation ID:
756 to 772
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    Trichome development is a fascinating model to elaborate the plant cell differentiation and growth processes. A wealth of information has pointed to the contributions of the components associated with cell cycle control and ubiquitin/26S proteasome system (UPS) to trichome morphogenesis, but how these two pathways are connected remains obscure. Here, we report that HECT‐type ubiquitin ligase KAKTUS (KAK) targets the cyclin‐dependent kinase (CDK) inhibitor KRP2 (for kip‐related protein 2) for proteasome‐dependent degradation during trichome branching in Arabidopsis. We show that over‐expression ofKRP2promotes trichome branching and endoreduplication which is similar tokakloss of function mutants. KAK directly interacts with KRP2 and mediates KRP2 degradation. Mutation ofKAKresults in the accumulation of steady‐state KRP2. Consistently, inkak pKRP2:KRP2‐GFPplants, the trichome branching is further induced compared with the single mutant. Taken together, our studies bridge the cell cycle control and UPS pathways during trichome development and underscore the importance of post‐translational control in epidermal differentiation.

     
    more » « less
  2. Summary

    Mitogen‐activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance ofMPKproteins in signaling events, specific roles for many ArabidopsisMPKproteins remain unknown. Multiple studies have suggested roles forMPKsignaling in a variety of auxin‐related processes. To identifyMPKproteins with roles in auxin response, we screenedmpkinsertional alleles and identifiedmpk1‐1as a mutant that displays hypersensitivity in auxin‐responsive cell expansion assays. Further, mutants defective in the upstreamMAPkinase kinase MKK3 also display hypersensitivity in auxin‐responsive cell expansion assays, suggesting that thisMPKcascade affects auxin‐influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho‐like GTPases from Plants (ROP) small GTPase family. Similar tompk1‐1andmkk3‐1mutants,rbk1insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin‐responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin‐responsive cell expansion are mediated through phosphorylation‐dependent modulation of ROP activity. Our data suggest a MKK3 • MPK1 • RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion.

     
    more » « less
  3. Abstract

    Brassinosteroids (BRs) are essential plant growth‐promoting hormones involved in many processes throughout plant development, from seed germination to flowering time. SinceBRsdo not undergo long‐distance transport, cell‐ and tissue‐specific regulation of hormone levels involves both biosynthesis and inactivation. To date, tenBR‐inactivating enzymes, with at least five distinct biochemical activities, have been experimentally identified in the model plantArabidopsis thaliana. Epigenetic interactions betweenT‐DNAinsertion alleles and genetic linkage have hindered analysis of higher‐order null mutants in these genes. A previous study demonstrated that thebas1‐2 sob7‐1 ben1‐1triple‐null mutant could not be characterized due to epigenetic interactions between the exonicT‐DNAinsertions inbas1‐2andsob7‐1,causing the intronicT‐DNAinsertion ofben1‐1to revert to a partial loss‐of‐function allele. We usedCRISPR‐Cas9genome editing to avoid this problem and generated thebas1‐2 sob7‐1 ben1‐3triple‐null mutant. This triple‐null mutant resulted in an additive seedling long‐hypocotyl phenotype. We also uncovered a role forBEN1‐mediatedBR‐inactivation in seedling cotyledon petiole elongation that was not observed in the singleben1‐2null mutant but only in the absence of bothBAS1andSOB7. In addition, genetic analysis demonstrated thatBEN1does not contribute to the early‐flowering phenotype, whichBAS1andSOB7redundantly regulate. Our results show thatBAS1,BEN1,andSOB7have overlapping and independent roles based on their differential spatiotemporal tissue expression patterns

     
    more » « less
  4. Abstract

    The TTG2 transcription factor ofArabidopsisregulates a set of epidermal traits, including the differentiation of leaf trichomes, flavonoid pigment production in cells of the inner testa (or seed coat) layer and mucilage production in specialized cells of the outer testa layer. Despite the fact that TTG2 has been known for over twenty years as an important regulator of multiple developmental pathways, little has been discovered about the downstream mechanisms by which TTG2 co-regulates these epidermal features. In this study, we present evidence of phosphoinositide lipid signaling as a mechanism for the regulation of TTG2-dependent epidermal pathways. Overexpression of theAtPLC1gene rescues the trichome and seed coat phenotypes of thettg2-1mutant plant. Moreover, in the case of seed coat color rescue,AtPLC1overexpression restored expression of the TTG2 flavonoid pathway target genes,TT12andTT13/AHA10. Consistent with these observations, a dominantAtPLC1T-DNA insertion allele (plc1-1D)promotes trichome development in both wild-type andttg2-3plants. Also,AtPLC1promoter:GUS analysis shows expression in trichomes and this expression appears dependent on TTG2. Taken together, the discovery of a genetic interaction betweenTTG2andAtPLC1suggests a role for phosphoinositide signaling in the regulation of trichome development, flavonoid pigment biosynthesis and the differentiation of mucilage-producing cells of the seed coat. This finding provides new avenues for future research at the intersection of the TTG2-dependent developmental pathways and the numerous molecular and cellular phenomena influenced by phospholipid signaling.

     
    more » « less
  5. Abstract

    The Arabidopsis (Arabidopsis thaliana) TRANSPARENT TESTA GLABRA2 (TTG2) gene encodes a WRKY transcription factor that regulates a range of development events like trichome, seed coat, and atrichoblast formation. Loss-of-function of TTG2 was previously shown to reduce or eliminate trichome specification and branching. Here, we report the identification of an allele of TTG2, ttg2-6. In contrast to the ttg2 mutants described before, ttg2-6 displayed unique trichome phenotypes. Some ttg2-6 mutant trichomes were hyper-branched, whereas others were hypo-branched, distorted, or clustered. Further, we found that in addition to specifically activating R3 MYB transcription factor TRIPTYCHON (TRY) to modulate trichome specification, TTG2 also integrated cytoskeletal signaling to regulate trichome morphogenesis. The ttg2-6 trichomes displayed aberrant cortical microtubules (cMTs) and actin filaments (F-actin) configurations. Moreover, genetic and biochemical analyses showed that TTG2 could directly bind to the promoter and regulate the expression of BRICK1 (BRK1), which encodes a subunit of the actin nucleation promoting complex suppressor of cyclic AMP repressor (SCAR)/Wiskott–Aldrich syndrome protein family verprolin homologous protein (WAVE). Collectively, taking advantage of ttg2-6, we uncovered a function for TTG2 in facilitating cMTs and F-actin cytoskeleton-dependent trichome development, providing insight into cellular signaling events downstream of the core transcriptional regulation during trichome development in Arabidopsis.

     
    more » « less