skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultrafast microscopy and image segmentation of spatially heterogeneous excited state and trap passivation in Cu2BaSnSSe3
Earth-abundant Cu2BaSnS4-xSex (CBTSSe) represents a recent alter- native for Cu2ZnSn(S,Se)4 for solar energy conversion with a lower level of disorder and band tailing. We report the heterogeneous excited-state and trap-state pattern in different solution-processed CBTSSe films using ultrafast two-color pump-probe diffuse reflec- tance microscopic imaging. The spectroscopy/microscopy method can visualize and correlate the microscopic compositional and elec- tronic variations (i.e., trap states) in real space with time-resolved photophysics. Heterogeneity patterns in TAM images show that some grains exhibit a positive excited-state absorption (ESA) signal, while others show negative ground-state bleaching (GSB). Our re- sults visualize that film processing, such as air annealing and Na addition, has a clear influence on the heterogeneity of the excited- state pattern. Importantly, we report stable charge carrier over 100 ps. We applied the image principal component and histogram for quantitative analysis of TAM images to deconvolute and visu- alize the contribution and fingerprints of minority free carriers and sub-band-gap trapped carriers.  more » « less
Award ID(s):
2239539
PAR ID:
10479194
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Cell Reports Physical Science
Date Published:
Journal Name:
Cell Reports Physical Science
Volume:
4
Issue:
10
ISSN:
2666-3864
Page Range / eLocation ID:
101601
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the past decade, the proliferation of pulsed laser sources with high repetition rates has facilitated a merger of ultrafast time-resolved spectroscopy with imaging microscopy. In transient absorption microscopy (TAM), the excited-state dynamics of a system are tracked by measuring changes in the transmission of a focused probe pulse following photoexcitation of a sample. Typically, these experiments are done using a photodiode detector and lock-in amplifier synchronized with the laser and images highlighting spatial heterogeneity in the TAM signal are constructed by scanning the probe across a sample. Performing TAM by instead imaging a spatially defocused widefield probe with a multipixel camera could dramatically accelerate the acquisition of spatially resolved dynamics, yet approaches for such widefield imaging generally suffer from reduced signal-to-noise due to an incompatibility of multipixel cameras with high-frequency lock-in detection. Herein, we describe implementation of a camera capable of high-frequency lock-in detection, thereby enabling widefield TAM imaging at rates matching those of high repetition rate lasers. Transient images using a widefield probe and two separate pump pulse configurations are highlighted. In the first, a widefield probe was used to image changes in the spatial distribution of photoexcited molecules prepared by a tightly focused pump pulse, while in the second, a widefield probe detected spatial variations in photoexcited dynamics within a heterogeneous organic crystal excited by a defocused pump pulse. These results highlight the ability of high-sensitivity lock-in detection to enable widefield TAM imaging, which can be leveraged to further our understanding of excited-state dynamics and excitation transport within spatially heterogeneous systems. 
    more » « less
  2. Abstract Germanium sulfide (GeS) is a 2D semiconductor with potential for high-speed optoelectronics and photovoltaics due to its near-infrared band gap and high mobility of optically excited charge carriers. Here, we use time-resolved THz spectroscopy to investigate the differences in ultrafast carrier dynamics in GeS following near-band gap photoexcitation (1.55 eV), which penetrates deep into the multilayer GeS, and excitation with above-band gap photon energy (3.1 eV), which is absorbed within a sub-20 nm surface layer. We find that the photoexcited carriers in the bulk have significantly longer lifetimes and higher mobility, as they are less impacted by trap states that affect carrier behavior in the surface layer. These insights are important for designing GeS-based photodetectors, solar energy conversion devices, and sensors that leverage the sensitivity of surface-layer photoexcited carriers to trap states. 
    more » « less
  3. The magnitude and temporal evolution of the quantum-state renormalization (QSR), or the energetic shifting of the quantum-confinement states caused by photoexcitation and changes in electron screening, were probed in transient absorption (TA) spectroscopy measurements of colloidal semiconductor nanoparticles. Experiments were performed on high- and lower-quality wurtzite CdTe quantum wires (QWs) with photoluminescence quantum yields of 8.8% and ∼0.2% using low-excitation fluences. The QSR shifts the spectral features to lower energies in both samples, with larger shifts measured in the high-quality QWs. The TA spectral features measured for both samples shift uniquely with time after photoexcitation, illustrating dynamic QSR that depends on the quantum-confinement states and on the states occupied by carriers. The higher fraction of carriers that reach the band-edge states in the high-quality QWs results in larger renormalization, with the energies of the band-edge states approaching the Stokes shift of the steady-state photoluminescence feature below the band-edge absorption energy. The intraband relaxation dynamics of charge carriers photoexcited in semiconductor nanoparticles was also characterized after accounting for contributions from QSR in the TA data. The intraband relaxation to the band-edge states was slower in the high-quality QWs than in the lower-quality QWs, likely due to the reduced number of trap states accessible. The contrasting relaxation time scales provide definitive evidence for a dependence of the photoluminescence efficiency on excitation energy. These studies reveal the complicated interplay between the energetics and relaxation mechanisms of carriers within semiconductor nanoparticles, even those with the same dimensionality. 
    more » « less
  4. Exciton dynamics o perovskite nanoclusters has been investigated or the rst time using emtosecond transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopy. The TA results show two photoinduced absorption signals at 420 and 461 nm and a photoinduced bleach (PB) signal at 448 nm. The analysis o the PB recovery kinetic decay and kinetic model uncovered multiple processes contributing to electron−hole recombination. The ast component (∼8 ps) is attributed to vibrational relaxation within the initial excited state, and the medium component (∼60 ps) is attributed to shallow carrier trapping. The slow component is attributed to deep carrier trapping rom the initial conduction band edge (∼666 ps) and the shallow trap state (∼40 ps). The TRPL reveals longer time dynamics, with modeled lietimes o 6.6 and 93 ns attributed to recombination through the deep trap state and direct band edge recombination, respectively. The signicant role o exciton trapping processes in the dynamics indicates that these highly conned nanoclusters have deect-rich suraces. 
    more » « less
  5. The excited state dynamics of ligand-passivated PbBr2 molecular clusters (MCs) in solution have been investigated for the first time using femtosecond transient absorption spectroscopy. The results uncover a transient bleach (TB) feature peaked around 404 nm, matching the ground state electronic absorption band peaked at 404 nm. The TB recovery signal can be fitted with a triple exponential with fast (10 ps), medium (350 ps), and long (1.8 ns) time constants. The medium and long time constants are very similar to those observed in the timeresolved photoluminescence (TRPL) decay monitored at 412 nm. The TB fast component is attributed to vibrational relaxation in the excited electronic state while the medium component with dominant amplitude is attributed to recombination between the relaxed electron and hole. The small amplitude slow component is assigned to electrons in a relatively long-lived excited electronic state, e.g., triplet state, or shallow trap state due to defects. This study provides new insights into the excited state dynamics of metal halide MCs. 
    more » « less