skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Refactoring and Heterologous Expression of Class III Lanthipeptide Biosynthetic Gene Clusters Lead to the Discovery of N , N -Dimethylated Lantibiotics from Firmicutes
Award ID(s):
1655740 2216137
PAR ID:
10479210
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
ACS Chemical Biology
Volume:
18
Issue:
3
ISSN:
1554-8929
Page Range / eLocation ID:
508 to 517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We describe convenient preparations ofN,N′‐dialkyl‐1,3‐propanedialdiminium chlorides,N,N′‐dialkyl‐1,3‐propanedialdimines, and lithiumN,N′‐dialkyl‐1,3‐propanedialdiminates in which the alkyl groups are methyl, ethyl, isopropyl, ortert‐butyl. For the dialdiminium salts, the N2C3backbone is always in thetrans‐s‐transconfiguration. Three isomers are present in solution except for thetert‐butyl compound, for which only two isomers are present; increasing the steric bulk of theN‐alkyl substituents shifts the equilibrium away from the (Z,Z) isomer in favor of the (E,Z), and (E,E) isomers. For the neutral dialdimines, crystal structures show that the methyl and isopropyl compounds adopt the (E,Z) form, whereas thetert‐butyl compound is in the (E,E) form. In aprotic solvents all four dialdimines (as well as the lithium dialdiminate salts) adoptcis‐s‐cisconformations in which there presumably is either an intramolecular hydrogen bond (or a lithium cation) between the two nitrogen atoms. 
    more » « less
  2. The synthesis of the title compound, C 13 H 21 NO 2 S, is reported here along with its crystal structure. This compound crystallizes with two molecules in the asymmetric unit. The sulfonamide functional group of this structure features S=O bond lengths ranging from 1.433 (3) to 1.439 (3) Å, S—C bond lengths of 1.777 (3) and 1.773 (4) Å, and S—N bond lengths of 1.622 (3) and 1.624 (3) Å. When viewing the molecules down the S—N bond, the isopropyl groups are gauche to the aromatic ring. On each molecule, two methyl hydrogen atoms of one isopropyl group are engaged in intramolecular C—H...O hydrogen bonds with a nearby sulfonamide oxygen atom. Intermolecular C—H...O hydrogen bonds and C—H...π interactions link molecules of the title compound in the solid state. 
    more » « less
  3. null (Ed.)
    First row transition metal complexes (Ni, Co, Cu, Zn) with N , N -disubstituted- N ′-acylthiourea ligands have been synthesized and characterized. Bis( N , N -diisopropyl- N ′-cinnamoylthiourea)nickel was found to have the lowest onset temperature for thermal decomposition. Thin film deposition of Ni, Co, and Zn sulfides by aerosol assisted chemical vapor deposition from their respective N , N -diisopropyl- N ′-cinnamoylthiourea complexes at 350 °C has been demonstrated. 
    more » « less
  4. Abstract N‐phenyl dibenzothiophene sulfoximine has been demonstrated to produce phenyl nitrene and dibenzothiopheneS‐oxide upon irradiation with UV‐A light, and dibenzothiopheneS‐oxide upon further irradiation releases triplet atomic oxygen. Thus,N‐phenyl dibenzothiophene sulfoximine exhibits a rare dual‐release capability in its photochemistry. In this work,N‐substituted dibenzothiophene sulfoximine derivatives are irradiated with UV‐A light to compare their photochemistry and quantum yield of dibenzothiopheneS‐oxide production with that ofN‐phenyl dibenzothiophene sulfoximine. BothN‐aryl andN‐alkyl derivatives of dibenzothiophene sulfoximine are examined to observe their effects on the quantum yield of the photolysis reaction. Adding electron withdrawingN‐aryl substituents is shown to increase the quantum yield of dibenzothiopheneS‐oxide production, while adding electron donatingN‐aryl substituents is shown to decrease the quantum yield. The quantum yield was slightly lowered or not increased by mostN‐alkyl substituents. Furthermore, the quantum yield was not augmented by branching and steric hindrance effects associated with theN‐alkyl substituents. These results suggest that electronic modulation of the sulfoximine bonds affects the observed photolysis reaction. 
    more » « less