Cooperative adaptive cruise control (CACC) is one of the popular connected and automated vehicle (CAV) applications for cooperative driving automation with combined connectivity and automation technologies to improve string stability. This study aimed to derive the string stability conditions of a CACC controller and analyze the impacts of CACC on string stability for both a fleet of homogeneous CAVs and for heterogeneous traffic with human-driven vehicles (HDVs), connected vehicles (CVs) with connectivity technologies only, and autonomous vehicles (AVs) with automation technologies only. We mathematically analyzed the impact of CACC on string stability for both homogeneous and heterogeneous traffic flow. We adopted parameters from literature for HDVs, CVs, and AVs for the heterogeneous traffic case. We found there was a minimum constant time headway required for each parameter design to ensure stability in homogeneous CACC traffic. In addition, the constant time headway and the length of control time interval had positive correlation with stability, but the control parameter had a negative correlation with stability. The numerical analysis also showed that CACC vehicles could maintain string stability better than CVs and AVs under low HDV market penetration rates for the mixed traffic case.
more »
« less
A Unified Framework for Data-Driven Optimal Control of Connected Vehicles in Mixed Traffic
This paper presents a unified approach to the problem of learning-based optimal control of connected human-driven and autonomous vehicles in mixed-traffic environments including both the freeway and ring road settings. The stabilizability of a string of connected vehicles including multiple autonomous vehicles (AVs) and heterogeneous human-driven vehicles (HDVs) is studied by a model reduction technique and the Popov-Belevitch-Hautus (PBH) test. For this problem setup, a linear quadratic regulator (LQR) problem is formulated and a solution based on adaptive dynamic programming (ADP) techniques is proposed without a priori knowledge on model parameters. To start the learning process, an initial stabilizing control law is obtained using the small-gain theorem for the ring road case. It is shown that the obtained stabilizing control law can achieve general Lp string stability under appropriate conditions. Besides, to minimize the impact of external disturbance, a linear quadratic zero-sum game is introduced and solved by an iterative learning-based algorithm. Finally, the simulation results verify the theoretical analysis and the proposed methods achieve desirable performance for control of a mixed-vehicular network.
more »
« less
- PAR ID:
- 10479223
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Intelligent Vehicles
- Volume:
- 8
- Issue:
- 8
- ISSN:
- 2379-8858
- Page Range / eLocation ID:
- 4131 to 4145
- Subject(s) / Keyword(s):
- Connected and autonomous vehicles (CAVs), stabilizability, adaptive dynamic programming, optimal control, disturbance attenuation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The safety impacts of cooperative platooning in mixed traffic consisting of human-driven, con-nected, and connected-automated vehicles were evaluated. The cooperative platooning in mixed traffic control algorithm evaluated is the Cooperative Adaptive Cruise Control with unconnected Vehicle (CACCu) with an unconnected vehicle. Its safety and string stability were evaluated using a high-fidelity simulation based on real-world vehicle trajectories. An Adaptive Cruise Control (ACC) algorithm was selected for comparison purposes. The results indicate that the cooperative platooning in mixed traffic control algorithm (CACCu) maintains string stability and performs more safely than the ACC.more » « less
-
This paper studies the learning-based optimal control for a class of infinite-dimensional linear time-delay systems. The aim is to fill the gap of adaptive dynamic programming (ADP) where adaptive optimal control of infinite-dimensional systems is not addressed. A key strategy is to combine the classical model-based linear quadratic (LQ) optimal control of time-delay systems with the state-of-art reinforcement learning (RL) technique. Both the model-based and data-driven policy iteration (PI) approaches are proposed to solve the corresponding algebraic Riccati equation (ARE) with guaranteed convergence. The proposed PI algorithm can be considered as a generalization of ADP to infinite-dimensional time-delay systems. The efficiency of the proposed algorithm is demonstrated by the practical application arising from autonomous driving in mixed traffic environments, where human drivers’ reaction delay is considered.more » « less
-
Abstract We describe a simulation environment that enables the design and testing of control policies for off-road mobility of autonomous agents. The environment is demonstrated in conjunction with the training and assessment of a reinforcement learning policy that uses sensor fusion and interagent communication to enable the movement of mixed convoys of human-driven and autonomous vehicles. Policies learned on rigid terrain are shown to transfer to hard (silt-like) and soft (snow-like) deformable terrains. The environment described performs the following: multivehicle multibody dynamics cosimulation in a time/space-coherent infrastructure that relies on the Message Passing Interface standard for low-latency parallel computing; sensor simulation (e.g., camera, GPU, IMU); simulation of a virtual world that can be altered by the agents present in the simulation; training that uses reinforcement learning to “teach” the autonomous vehicles to drive in an obstacle-riddled course. The software stack described is open source. Relevant movies: Project Chrono. Off-road AV simulations, 20202.more » « less
-
Zonta, Daniele; Su, Zhongqing; Glisic, Branko (Ed.)With the rapid development of smart cities, interest in vehicle automation continues growing. Autonomous vehicles are becoming more and more popular among people and are considered to be the future of ground transportation. Autonomous vehicles, either with adaptive cruise control (ACC) or cooperative adaptive cruise control (CACC), provide many possibilities for smart transportation in a smart city. However, traditional vehicles and autonomous vehicles will have to share the same road systems until autonomous vehicles fully penetrate the market over the next few decades, which leads to conflicts because of the inconsistency of human drivers. In this paper, the performance of autonomous vehicles with ACC/CACC and traditional vehicles in mixed driver environments, at a signalized intersection, were evaluated using the micro-simulator VISSIM. In the simulation, the vehicles controlled by the ACC/CACC and Wiedemann 99 (W99) model represent the behavior of autonomous vehicles and human driver vehicles, respectively. For these two different driver environments, four different transport modes were comprehensively investigated: full light duty cars, full trucks, full motorcycles, and mixed conditions. In addition, ten different seed numbers were applied to each model to avoid coincidence. To evaluate the driving behavior of the human drivers and autonomous vehicles, this paper will compare the total number of stops, average velocity, and vehicle delay of each model at the signalized traffic intersection based on a real road intersection in Minnesota.more » « less
An official website of the United States government

