Abstract In the study of subgrid-scale tropical convection, the importance of retaining the frequently omitted “nontraditional” component of the Coriolis force is increasingly being recognized. A number of recent papers have developed linear theories examining the behavior of a diabatic heat-source-driven convective circulation in the presence of the full Coriolis force, and it was shown that the nontraditional Coriolis terms drive vertical shears on the large scales through upscale fluxes of momentum. In the present work, we generalize these results to the nonlinear regime, using a formal asymptotic theory based upon the fact that rotation is a second-order effect compared with advection by the vertical component of velocity at subgrid scales. Ultimately, we demonstrate that the same basic flow structures persist, with a particular emphasis on the counterrotating vortex pair induced by the nontraditional Coriolis terms which drive a westward tilt in convection. We compute the form of the upscale momentum flux convergence in the nonlinear regime, greatly extending the regimes of validity provided by the simple analytical expressions previously given in the linear case. This study constitutes an important step toward being able to accurately and consistently parameterize the large-scale vertical shear driven by nonlinear, subgrid convective processes under the influence of the nontraditional Coriolis force terms.
more »
« less
Balanced Convective Circulations in a Stratified Atmosphere. Part I: A Framework for Assessing Radiation, the Coriolis Force, and Drag
Abstract The so-called traditional approximation, wherein the component of the Coriolis force proportional to the cosine of latitude is ignored, is frequently made in order to simplify the equations of atmospheric circulation. For velocity fields whose vertical component is comparable to their horizontal component (such as convective circulations), and in the tropics where the sine of latitude vanishes, the traditional approximation is not justified. We introduce a framework for studying the effect of diabatic heating on circulations in the presence of both traditional and nontraditional terms in the Coriolis force. The framework is intended to describe steady convective circulations on anfplane in the presence of radiation and momentum damping. We derive a single elliptic equation for the horizontal velocity potential, which is a generalization of the weak temperature gradient (WTG) approximation. The elliptic operator depends on latitude, radiative damping, and momentum damping coefficients. We show how all other dynamical fields can be diagnosed from this velocity potential; the horizontal velocity induced by the Coriolis force has a particularly simple expression in terms of the velocity potential. Limiting examples occur at the equator, where only the nontraditional terms are present, at the poles, where only the traditional terms appear, and in the absence of radiative damping where the WTG approximation is recovered. We discuss how the framework will be used to construct dynamical, nonlinear convective models, in order to diagnose their consequent upscale momentum and temperature fluxes.
more »
« less
- Award ID(s):
- 2224293
- PAR ID:
- 10479236
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 80
- Issue:
- 12
- ISSN:
- 0022-4928
- Format(s):
- Medium: X Size: p. 2915-2924
- Size(s):
- p. 2915-2924
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A single column model with parameterized large‐scale (LS) dynamics is used to better understand the response of steady‐state tropical precipitation to relative sea surface temperature under various representations of radiation, convection, and circulation. The large‐scale dynamics are parametrized via the weak temperature gradient (WTG), damped gravity wave (DGW), and spectral weak temperature gradient (Spectral WTG) method in NCAR's Single Column Atmosphere Model (SCAM6). Radiative cooling is either specified or interactive, and the convective parameterization is run using two different values of a parameter that controls the degree of convective inhibition. Results are interpreted in the context of the Global Atmospheric System Studies ‐Weak Temperature Gradient (GASS‐WTG) Intercomparison project. Using the same parameter settings and simulation configuration as in the GASS‐WTG Intercomparison project, SCAM6 under the WTG and DGW methods produces erratic results, suggestive of numerical instability. However, when key parameters are changed to weaken the large‐scale circulation's damping of tropospheric temperature variations, SCAM6 performs comparably to single column models in the GASS‐WTG Intercomparison project. The Spectral WTG method is less sensitive to changes in convection and radiation than are the other two methods, performing qualitatively similarly across all configurations considered. Under all three methods, circulation strength, represented in 1D by grid‐scale vertical velocity, is decreased when barriers to convection are reduced. This effect is most extreme under specified radiative cooling, and is shown to come from increased static stability in the column's reference radiative‐convective equilibrium profile. This argument can be extended to interactive radiation cases as well, though perhaps less conclusively.more » « less
-
Abstract Subgrid processes in global climate models are represented by parameterizations which are a major source of uncertainties in simulations of climate. In recent years, it has been suggested that machine‐learning (ML) parameterizations based on high‐resolution model output data could be superior to traditional parameterizations. Currently, both traditional and ML parameterizations of subgrid processes in the atmosphere are based on a single‐column approach, which only use information from single atmospheric columns. However, single‐column parameterizations might not be ideal since certain atmospheric phenomena, such as organized convective systems, can cross multiple grid boxes and involve slantwise circulations that are not purely vertical. Here we train neural networks (NNs) using non‐local inputs spanning over 3 × 3 columns of inputs. We find that including the non‐local inputs improves the offline prediction of a range of subgrid processes. The improvement is especially notable for subgrid momentum transport and for atmospheric conditions associated with mid‐latitude fronts and convective instability. Using an interpretability method, we find that the NN improvements partly rely on using the horizontal wind divergence, and we further show that including the divergence or vertical velocity as a separate input substantially improves offline performance. However, non‐local winds continue to be useful inputs for parameterizating subgrid momentum transport even when the vertical velocity is included as an input. Overall, our results imply that the use of non‐local variables and the vertical velocity as inputs could improve the performance of ML parameterizations, and the use of these inputs should be tested in online simulations in future work.more » « less
-
Abstract Potential intensity (PI) has been shown to have a linear sensitivity to sea surface temperature (SST) of about 8 m s −1 K −1 , which is close to the sensitivity of PI in simulations subject to a weak temperature gradient (WTG) approximation. This suggests that most of the PI variance is associated with local rather than global SST variations. We verify that PI perturbations are approximately linear in SST, with slopes of 1.8 ± 0.2 m s −1 K −1 in radiative–convective equilibrium (RCE) and 9.1 ± 0.9 m s −1 K −1 in WTG. To do so, we simulate the sensitivity of both RCE and WTG states in a single-column model (SCM) perturbed by changing in turn CO 2 concentration, aerosol concentrations, prescribed SST, and surface winds speeds. While PI is much more sensitive to SST in WTG than in RCE simulations, the SST itself is much less sensitive to radiative forcing in WTG than in RCE because of the absence of strong atmospheric response. Using these results, we develop a linear model, based on SST and midlevel saturation MSE perturbations, to partition SST and PI perturbations between local components occurring under a WTG constraint and global components that are representative of an RCE state. This model explains up to 95% of the variability of PI in reanalysis. The SCM-derived linear model coefficients are statistically indistinguishable from coefficients from a linear fit of reanalysis PI to SST and midlevel saturation MSE in most ocean basins. Our model shows that North Atlantic PI variations are explained almost entirely by local forcings in recent decades.more » « less
-
Abstract The latitudinal location of the east Pacific Ocean intertropical convergence zone (ITCZ) changes on time scales of days to weeks during boreal spring. This study focuses on tropical near-surface dynamics in the days leading up to the two most frequent types of ITCZ events, nITCZ (Northern Hemisphere) and dITCZ (double). There is a rapid daily evolution of dynamical features on top of a slower, weekly evolution that occurs leading up to and after nITCZ and dITCZ events. Zonally elongated bands of anomalous cross-equatorial flow and off-equatorial convergence rapidly intensify and peak 1 day before or the day of these ITCZ events, followed 1 or 2 days later by a peak in near-equatorial zonal wind anomalies. In addition, there is a wide region north of the southeast Pacific subtropical high where anomalous northwesterlies strengthen prior to nITCZ events and southeasterlies strengthen before dITCZ events. Anomalous zonal and meridional near-surface momentum budgets reveal that the terms associated with Ekman balance are of first-order importance preceding nITCZ events, but that the meridional momentum advective terms are just as important before dITCZ events. Variations in cross-equatorial flow are promoted by the meridional pressure gradient force (PGF) prior to nITCZ events and the meridional advection of meridional momentum in addition to the meridional PGF before dITCZ events. Meanwhile, variations in near-equatorial easterlies are driven by the zonal PGF and the Coriolis force preceding nITCZ events and the zonal PGF, the Coriolis force, and the meridional advection of zonal momentum before dITCZ events.more » « less
An official website of the United States government
