skip to main content


Title: Fundamental limits on radiative χ (2) second harmonic generation

Recent advances in fundamental performance limits for power quantities based on Lagrange duality are proving to be a powerful theoretical tool for understanding electromagnetic wave phenomena. To date, however, in any approach seeking to enforce a high degree of physical reality, the linearity of the wave equation plays a critical role. In this manuscript, we generalize the current quadratically constrained quadratic program framework for evaluating linear photonics limits to incorporate nonlinear processes under the undepleted pump approximation. Via the exemplary objective of enhancing second harmonic generation in a (free-form) wavelength-scale structure, we illustrate a model constraint scheme that can be used in conjunction with standard convex relaxations to bound performance in the presence of nonlinear dynamics. Representative bounds are found to anticipate features observed in optimized structures discovered via computational inverse design. The formulation can be straightforwardly modified to treat other frequency-conversion processes, including Raman scattering and four-wave mixing.

 
more » « less
NSF-PAR ID:
10479336
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
31
Issue:
26
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 44212
Size(s):
["Article No. 44212"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The generation of renewable electricity is variable, leading to periodic oversupply. Excess power can be converted to H2via water electrolysis, but the conversion cost is currently too high. One way to decrease the cost of electrolysis is to increase the maximum productivity of electrolyzers. This study investigates how nano‐ and microstructured porous electrodes can improve the productivity of H2generation in a zero‐gap, flow‐through alkaline water electrolyzer. Three nickel electrodes—foam, microfiber felt, and nanowire felt—are studied to examine the tradeoff between surface area and pore structure on the performance of alkaline electrolyzers. Although the nanowire felt with the highest surface area initially provides the highest performance, this performance quickly decreases as gas bubbles are trapped within the electrode. The open structure of the foam facilitates bubble removal, but its small surface area limits its maximum performance. The microfiber felt exhibits the best performance because it balances high surface area with the ability to remove bubbles. The microfiber felt maintains a maximum current density of 25 000 mA cm−2over 100 h without degradation, which corresponds to a hydrogen production rate 12.5‐ and 50‐times greater than conventional proton‐exchange membrane and alkaline electrolyzers, respectively.

     
    more » « less
  2. Inverse design is a powerful tool in wave physics for compact, high-performance devices. To date, applications in photonics have mostly been limited to linear systems and it has rarely been investigated or demonstrated in the nonlinear regime. In addition, the “black box” nature of inverse design techniques has hindered the understanding of optimized inverse-designed structures. We propose an inverse design method with interpretable results to enhance the efficiency of on-chip photon generation rate through nonlinear processes by controlling the effective phase-matching conditions. We fabricate and characterize a compact, inverse-designed device using a silicon-on-insulator platform that allows a spontaneous four-wave mixing process to generate photon pairs at a rate of 1.1 MHz with a coincidence to accidental ratio of 162. Our design method accounts for fabrication constraints and can be used for scalable quantum light sources in large-scale communication and computing applications.

     
    more » « less
  3. Abstract

    We report on scalable heterointegration of superconducting electrodes and epitaxial semiconductor quantum dots (QDs) on strong piezoelectric and optically nonlinear lithium niobate. The implemented processes combine the sputter-deposited thin film superconductor niobium nitride and III–V compound semiconductor membranes onto the host substrate. The superconducting thin film is employed as a zero-resistivity electrode material for a surface acoustic wave resonator with internal quality factorsQ17000representing a three-fold enhancement compared to identical devices with normal conducting electrodes. Superconducting operation of400MHzresonators is achieved to temperaturesT>7Kand electrical radio frequency powersPrf>+9dBm. Heterogeneously integrated single QDs couple to the resonant phononic field of the surface acoustic wave resonator operated in the superconducting regime. Position and frequency selective coupling mediated by deformation potential coupling is validated using time-integrated and time-resolved optical spectroscopy. Furthermore, acoustoelectric charge state control is achieved in a modified device geometry harnessing large piezoelectric fields inside the resonator. The hybrid QD—surface acoustic wave resonator can be scaled to higher operation frequencies and smaller mode volumes for quantum phase modulation and transduction between photons and phonons via the QD. Finally, the employed materials allow for the realization of other types of optoelectronic devices, including superconducting single photon detectors and integrated photonic and phononic circuits.

     
    more » « less
  4. Abstract

    The waves generated by high-energy proton and alpha particles streaming from solar flares into regions of colder plasma are explored using particle-in-cell simulations. Initial distribution functions for the protons and alphas consist of two populations: an energetic, streaming population represented by an anisotropic (T>T), one-sided kappa function and a cold, Maxwellian background population. The anisotropies and nonzero heat fluxes of these distributions destabilize oblique waves with a range of frequencies below the proton cyclotron frequency. These waves scatter particles out of the tails of the initial distributions along constant-energy surfaces in the wave frame. Overlap of the nonlinear resonance widths allows particles to scatter into near-isotropic distributions by the end of the simulations. The dynamics of3He are explored using test particles. Their temperatures can increase by a factor of nearly 20. Propagation of such waves into regions above and below the flare site can lead to heating and transport of3He into the flare acceleration region. The amount of heated3He that will be driven into the flare site is proportional to the wave energy. Using values from our simulations, we show that the abundance of3He driven into the acceleration region should approach that of4He in the corona. Therefore, waves driven by energetic ions produced in flares are a strong candidate to drive the enhancements of3He observed in impulsive flares.

     
    more » « less
  5. Abstract

    Soft materials are of major interest for biomechanics applications due to their high deformability and susceptibility to experience damage events under different loading scenarios. The present study is concerned with modelling damage evolution processes in these nonlinear materials whose structural responses are prone to locking when low-order kinematic interpolation is employed in the context of nonlinear Finite Element schemes. For this reason, a pair of gradient-enhanced continuum damage schemes are proposed with the aim of tackling mechanical failure problems in applications that exhibit shear and volumetric locking. In particular, we present the consistent formulation and the assessment of the corresponding performance of (i) a mixed displacement-enhanced assumed strain employing a total Lagrangian formulation, and (ii) a three-field mixed displacement-pressure-Jacobian formulation. The novel and formulations are consistently derived and numerically implemented, providing a satisfactory agreement with respect to built-in elements handling the treatment of shear and volumetric locking, respectively, in conjunction to the modelling damage phenomena via the use of a penalty-based gradient-enhanced formulation. This performance is examined via several numerical applications. Furthermore, the final example justifies the need for a formulation combining both mixed FE approaches to simulate problems encompassing both locking issues (shear and volumetric locking), which can be performed using a combination of the and herein proposed.

     
    more » « less