skip to main content


Title: Spintronic Quantum Phase Transition in a Graphene/Pb 0.24 Sn 0.76 Te Heterostructure with Giant Rashba Spin‐Orbit Coupling
Abstract

Mechanical stacking of two dissimilar materials often has surprising consequences for heterostructure behavior. In particular, a 2D electron gas (2DEG) is formed in the heterostructure of the topological crystalline insulator Pb0.24Sn0.76Te and graphene due to contact of a polar with a nonpolar surface and the resulting changes in electronic structure needed to avoid polar catastrophe. The spintronic properties of this heterostructure with non‐local spin valve devices are studied. This study observes spin‐momentum locking at lower temperatures that transitions to regular spin channel transport only at ≈40 K. Hanle spin precession measurements show a spin relaxation time as high as 2.18 ns. Density functional theory calculations confirm that the spin‐momentum locking is due to a giant Rashba effect in the material and that the phase transition is a Lifshitz transition. The theoretically predicted Lifshitz transition is further evident in the phase transition‐like behavior in the Landé g‐factor and spin relaxation time.

 
more » « less
Award ID(s):
1752840
PAR ID:
10479346
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In the presence of strong spin-independent interactions and spin-orbit coupling, we show that the spinor Bose liquid confined to one spatial dimension undergoes an interaction- or density-tuned quantum phase transition similar to one theoretically proposed for itinerant magnetic solid-state systems. The order parameter describes broken Z2inversion symmetry, with the ordered phase accompanied by non-vanishing momentum which is generated by fluctuations of an emergent dynamical gauge field at the phase transition. This quantum phase transition has dynamical critical exponentz ≃ 2, typical of a Lifshitz transition, but is described by a nontrivial interacting fixed point. From direct numerical simulation of the microscopic model, we extract previously unknown critical exponents for this fixed point. Our model describes a realistic situation of 1D ultracold atoms with Raman-induced spin-orbit coupling, establishing this system as a platform for studying exotic critical behavior of the Hertz-Millis type.

     
    more » « less
  2. Abstract

    Iron rhodium (FeRh) undergoes a first‐order anti‐ferromagnetic to ferromagnetic phase transition above its Curie temperature. By measuring the anomalous Nernst effect (ANE) in (110)‐oriented FeRh films on Al2O3substrates, the ANE thermopower over a temperature range of 100–350 K is observed, with similar magnetic transport behaviors observed for in‐plane magnetization (IM) and out‐of‐plane magnetization (PM) configurations. The temperature‐dependent magnetization–magnetic field strength (M–H) curves revealed that the ANE voltage is proportional to the magnetization of the material, but additional features magnetic textures not shown in the M‐H curves remained intractable. In particular, a sign reversal occurred for the ANE thermopower signal near zero field in the mixed‐magnetic‐phase films at low temperatures, which is attributed to the diamagnetic properties of the Al2O3substrate. Finite element method simulations associated with the Heisenberg spin model and Landau–Lifshitz–Gilbert equation strongly supported the abnormal heat transport behavior from the Al2O3substrate during the experimentally observed magnetic phase transition for the IM and PM configurations. The results demonstrate that FeRh films on an Al2O3substrate exhibit unusual behavior compared to other ferromagnetic materials, indicating their potential for use in novel applications associated with practical spintronics device design, neuromorphic computing, and magnetic memory.

     
    more » « less
  3. Abstract

    The interface between 2D topological Dirac states and ans‐wave superconductor is expected to support Majorana‐bound states (MBS) that can be used for quantum computing applications. Realizing these novel states of matter and their applications requires control over superconductivity and spin‐orbit coupling to achieve spin‐momentum‐locked topological interface states (TIS) which are simultaneously superconducting. While signatures of MBS have been observed in the magnetic vortex cores of bulk FeTe0.55Se0.45, inhomogeneity and disorder from doping make these signatures unclear and inconsistent between vortices. Here superconductivity is reported in monolayer (ML) FeTe1–ySey(Fe(Te,Se)) grown on Bi2Te3by molecular beam epitaxy (MBE). Spin and angle‐resolved photoemission spectroscopy (SARPES) directly resolve the interfacial spin and electronic structure of Fe(Te,Se)/Bi2Te3heterostructures. Fory = 0.25, the Fe(Te,Se) electronic structure is found to overlap with the Bi2Te3TIS and the desired spin‐momentum locking is not observed. In contrast, fory = 0.1, reduced inhomogeneity measured by scanning tunneling microscopy (STM) and a smaller Fe(Te,Se) Fermi surface with clear spin‐momentum locking in the topological states are found. Hence, it is demonstrated that the Fe(Te,Se)/Bi2Te3system is a highly tunable platform for realizing MBS where reduced doping can improve characteristics important for Majorana interrogation and potential applications.

     
    more » « less
  4. Abstract

    The emergence of hybrid metal halides (HMH) materials, such as the archetypal CH3NH3PbBr3, provides an appealing material platform for solution-processed spintronic applications due to properties such as unprecedented large Rashba spin-splitting states and highly efficient spin-to-charge (StC) conversion efficiencies. Here we report the first study of StC conversion and spin relaxation time in MAPbBr3single crystals at room temperature using a spin pumping approach. Microwave frequency and power dependence of StC responses are both consistent with the spin pumping model, from which an inverse Rashba–Edelstein effect coherence length of up to ∼30 picometer is obtained, highlighting a good StC conversion efficiency. The magnetic field angular dependence of StC is investigated and can be well-explained by the spin precession model under oblique magnetic field. A long spin relaxation time of up to ∼190 picoseconds is obtained, which can be attributed to the surface Rashba state formed at the MAPbBr3interface. Our oblique Hanle effect by FMR-driven spin pumping technique provides a reliable and sensitive tool for measuring the spin relaxation time in various solution processed HMH single crystals.

     
    more » « less
  5. Abstract

    The characteristic metal–insulator phase transition (MIT) in vanadium dioxide results in nonlinear electrical transport behavior, allowing VO2devices to imitate the complex functions of neurological behavior. Chemical doping is an established method for varying the properties of the MIT, and interstitial dopant boron has been shown to generate a unique dynamic relaxation effect in individual B‐VO2particles. This paper describes the first demonstration of an electrically stimulated B‐VO2proto‐device which manifests a time‐dependent critical transformation temperature and switching voltage derived from the coupling of dopant diffusion dynamics and the metal–insulator transition of VO2. During quasi‐steady current‐driven transitions, the electrical responses of B‐VO2proto‐devices show a step‐by‐step progression through the phase transformation, evidencing domain transformations within individual particles. The dynamic relaxation effect is shown to increase the critical switching voltage by up to 41% (ΔVcrit =0.13 V) and also to increase the resistivity of the M1 phase of B‐VO2by 14%, imbuing a memristive response derived from intrinsic material properties. These observations demonstrate the dynamic relaxation effect in B‐VO2proto‐devices whose electrical transport responses can be adjusted by electronic phase transitions triggered by temperature but also by time as a result of intrinsic dynamics of interstitial dopants.

     
    more » « less