skip to main content


Title: Livestock activity shifts large herbivore temporal distributions to their crepuscular edges
Abstract

Wildlife species are transitioning to greater crepuscular and nocturnal activity in response to high human densities. This plasticity in temporal niches may partially mitigate the impacts of human activity but may also result in underestimating human effects on species foraging, predator–prey relationships and community‐level interactions.

We deployed remote cameras to characterize shifts in herbivore diel activity in protected habitat versus pastoralist landscapes. We then compared species traits including body mass, dietary preferences and behavioural characteristics as potential predictors of species sensitivity to livestock.

Our data capture a significant temporal shift away from core cattle activity for nearly every herbivore species in our study, leading to more crepuscular activity patterns. As livestock were primarily diurnal and predators primarily nocturnal in pastoralist habitat, species that decreased their overlap with livestock were more likely to increase their overlap with potential predators.

Other than species' typical daytime activity levels, we found no evidence that any particular trait significantly predicted temporal shifts in response to livestock. Instead, species generally trended towards greater activity levels at dawn, suggesting that cattle have a homogenizing effect on community‐wide activity patterns.

Our findings highlight how cohabitation with livestock can profoundly alter the temporal niches of wild herbivores. Shifts in diel activity patterns may reduce herbivore foraging time or efficiency and potentially have cascading shifts on predator–prey dynamics. Given that species traits could not predict responses to livestock, our analysis suggests that conservation strategies should consider each species separately when designing interventions for wildlife management.

 
more » « less
NSF-PAR ID:
10479534
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
93
Issue:
2
ISSN:
0021-8790
Format(s):
Medium: X Size: p. 231-245
Size(s):
["p. 231-245"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spatiotemporal variation in predation risk arises from interactions between landscape heterogeneity, predator densities and predator hunting mode, generating landscapes of fear for prey species that can have important effects on prey behaviour and ecosystem dynamics.

    As widespread apex predators, humans present a significant source of risk for hunted animal populations. Spatiotemporal patterns of risk from hunters can overlap or contrast with patterns of risk from other predators. Human infrastructure can also reshape spatial patterns of risk by facilitating or impeding hunter or predator movement, or deterring predators that are themselves wary of humans.

    We examined how anthropogenic and natural landscape features interact with hunting modes of rifle hunters and mountain lionsPuma concolorto generate spatiotemporal patterns of risk for their primary prey. We explored the implications of human‐modified landscapes of fear for Columbian black‐tailed deerOdocoileus hemionus columbianusin Mendocino County, California. We used historical harvest records, hunter GPS trackers and camera trap records of mountain lions to model patterns of risk for deer. We then used camera traps to examine deer spatial and temporal activity patterns in response to this variation in risk.

    Hunters and mountain lions exhibited distinct, contrasting patterns of spatiotemporal activity. Risk from rifle hunters, who rely on long lines of sight, was highest in open grasslands and near roads and was confined to the daytime. Risk from mountain lions, an ambush predator, was highest in dense shrubland habitat, farther from developed areas, and during the night and crepuscular periods. Areas of human settlement provided a refuge from both hunters and mountain lions. We found no evidence that deer avoided risk in space at the scale of our observations, but deer adjusted their temporal activity patterns to reduce the risk of encounters with humans and mountain lions in areas of higher risk.

    Our study demonstrates that interactions between human infrastructure, habitat cover and predator hunting mode can result in distinct spatial patterns of predation risk from hunters and other predators that may lead to trade‐offs for prey species. However, distinct diel activity patterns of predators may create vacant hunting domains that reduce costly trade‐offs for prey. Our study highlights the importance of temporal partitioning as a mechanism of predation risk avoidance.

     
    more » « less
  2. Abstract

    Cattle and other livestock graze more than a quarter of the world's terrestrial area and are widely regarded to be drivers of global biodiversity declines. Studies often compare the effects of livestock presence/absence but, to our knowledge, no studies have tested for interactive effects between large wild herbivores and livestock at varying stocking rates on small‐bodied wild vertebrates.

    We investigated the effects of cattle stocking rates (none/moderate/high) on the diversity of wildlife 0.05–1,000 kg using camera traps at a long‐term exclosure experiment within a semi‐arid savanna ecosystem in central Kenya. In addition, by selectively excluding wild ‘mesoherbivores’ (50–1,000 kg) and ‘megaherbivores’ (>1,000 kg; elephant and giraffe), we tested whether the presence of these two wild herbivore guilds (collectively, ‘larger wild herbivores’) mediates the effect of cattle stocking rate on habitat use and diversity of ‘smaller wildlife’ (mammals ranging between 10 and 70 cm shoulder height and birds).

    Our results show that cattle enhance alpha diversity of smaller wildlife (with or without larger wild herbivore presence) and of all wildlife 0.05–1,000 kg (with or without megaherbivore presence), by altering vegetation structure. However, for smaller wildlife, this effect is less pronounced in the presence of larger wild herbivores, which also shorten grass. In the absence of cattle, mesoherbivore‐accessible sites showed higher alpha diversity of smaller wildlife than sites excluding mesoherbivores.

    Smaller wildlife habitat use was increased by high cattle stocking rates and wild mesoherbivores more in the presence of the other.

    Synthesis and applications. Our findings imply that grazing, whether by livestock or wildlife, can enhance local savanna wildlife diversity. The biodiversity benefits of localised increases in herbivory are likely to be due to shortened grass and associated visibility improvements (for predator avoidance/foraging). This suggests that land managers can increase local biodiversity by shortening grass, with wild or domestic herbivores (or both), at least in patches within a taller grass matrix.

     
    more » « less
  3. Abstract

    Increased turbidity and siltation caused by rock quarrying, mining, and deforestation are pervasive disturbances in aquatic systems. Turbidity interferes with vision for aquatic organisms, potentially altering predator–prey interactions.

    We studied the effects of these disturbances in Trinidadian streams by surveying predators and their shared prey both in streams with versus without quarries as well as in a focal stream before and after the establishment of a quarry. Then, to evaluate whether differential foraging success in turbid water might underlie abundance patterns of predators, we experimentally induced turbidity in mesocosms and measured predator foraging success.

    Upstream quarry presence had a dramatic effect on the benthic structure of streams, greatly increasing siltation. A substantial decrease in the abundance of a diurnal cichlid predator (Crenicichla frenata) was associated with quarry presence, while a nocturnal erytherinid predator (Hoplias malabaricus) was equally as abundant in streams with or without quarries. The density of their shared prey, the Trinidadian guppy (Poecilia reticulata) remained unchanged.

    In mesocosm trials,Crenicichlawere less successful predators with turbidity, whereasHopliasperformed equally across turbidities. These foraging success results help explain differences in demographic shifts in response to turbidity for both predators.

    By relating short‐term effects of an anthropogenically altered visual environment on species interactions to abundance patterns of predators and prey, this study helps to identify an important mechanism whereby changes to species’ visual ecology may have long‐term effects on population biology.

     
    more » « less
  4. Abstract

    Landscapes of fear describe a spatial representation of an animal's perceived risk of predation and the associated foraging costs, while energy landscapes describe the spatial representation of their energetic cost of moving and foraging. Fear landscapes are often dynamic and change based on predator presence and behaviour, and variation in abiotic conditions that modify risk. Energy landscapes are also dynamic and can change across diel, seasonal, and climatic timescales based on variability in temperature, snowfall, wind/current speeds, etc.

    Recently, it was suggested that fear and energy landscapes should be integrated. In this paradigm, the interaction between landscapes relates to prey being forced to use areas of the energy landscape they would avoid if risk were not a factor. However, dynamic energy landscapes experienced by predators must also be considered since they can affect their ability to forage, irrespective of variation in prey behaviour. We propose an additional component to the fear and dynamic energy landscape paradigm that integrates landscapes of both prey and predators, where predator foraging behaviour is modulated by changes in their energyscape.

    Specifically, we integrate the predator's energy landscape into foraging theory that predicts prey patch‐leaving decisions under the threat of predation. We predict that as a predator's energetic cost of foraging increases in a habitat, then the prey's foraging cost of predation and patch quitting harvest rate, will decrease. Prey may also decrease their vigilance in response to increased energetic foraging costs for predators, which will lower giving‐up densities of prey.

    We then provide examples in terrestrial, aerial, and marine ecosystems where we might expect to see these effects. These include birds and sharks which use updrafts that vary based on wind and current speeds, tidal state, or temperature, and terrestrial predators (e.g. wolves) whose landscapes vary seasonally with snow depth or ice cover which may influence their foraging success and even diet selection.

    A predator perspective is critical to considering the combination of these landscapes and their ecological consequences. Dynamic predator energy landscapes could add an additional spatiotemporal component to risk effects, which may cascade through food webs.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  5. Abstract

    Niche conservatism—the retention of ecological traits across space and time—is an emerging topic of interest because it can predict responses to global change. The conservation of Grinnellian niche characteristics, like species‐habitat associations, has received widespread attention, but the conservation of Eltonian traits such as consumer–resource interactions remains poorly understood.

    The inability to quantify Eltonian niches through space and time has historically limited the assessment of Eltonian niche conservatism and the dynamics of foraging across populations. Consequently, the relative influence of endogenous factors like phylogeny versus exogenous features like environmental context has rarely been addressed.

    We tested Eltonian niche conservatism using a paired design to compare foraging among four populations of American martensMartes americanaand Pacific martensMartes caurina, morphologically and ecologically similar sister taxa that are allopatrically distributed throughout western North America. We developed a three‐stage isotopic framework and then quantified dietary niche overlap between the sister species and paired island‐mainland sites to assess the relative influence of endogenous (i.e., species) versus exogenous (i.e., environment) factors on Eltonian niches. First, we calculated pairwise dietary overlap in scaled δ‐space using standard ellipses. We then estimated proportional diets (“p‐space”) for individuals using isotopic mixing models and developed a novel utilization distribution overlap approach to quantify proportional dietary overlap. Lastly, we estimated population‐level proportional diets and quantified the differential use of functional prey groups across sites.

    We detected no pairwise overlap of dietary niches in δ‐space, and distributions of individual diets in p‐space revealed little overlap in core diets across populations. All pairwise comparisons of individuals revealed significant differences in diet, and population‐level comparisons detected contrasting use of functional prey groups.

    We developed a multi‐faceted isotopic framework to quantify Eltonian niches and found limited evidence of Eltonian niche conservatism across carnivore populations. Our findings are consistent with the growing recognition of dietary plasticity in consumers and suggest that consumer–resource dynamics are largely driven by exogenous environmental factors like land cover and community composition. These results illustrate the context‐dependent nature of foraging and indicate consumer functionality can be dynamic.

    Aplain language summaryis available for this article.

     
    more » « less