skip to main content


Title: Contrasting patterns of risk from human and non‐human predators shape temporal activity of prey
Abstract

Spatiotemporal variation in predation risk arises from interactions between landscape heterogeneity, predator densities and predator hunting mode, generating landscapes of fear for prey species that can have important effects on prey behaviour and ecosystem dynamics.

As widespread apex predators, humans present a significant source of risk for hunted animal populations. Spatiotemporal patterns of risk from hunters can overlap or contrast with patterns of risk from other predators. Human infrastructure can also reshape spatial patterns of risk by facilitating or impeding hunter or predator movement, or deterring predators that are themselves wary of humans.

We examined how anthropogenic and natural landscape features interact with hunting modes of rifle hunters and mountain lionsPuma concolorto generate spatiotemporal patterns of risk for their primary prey. We explored the implications of human‐modified landscapes of fear for Columbian black‐tailed deerOdocoileus hemionus columbianusin Mendocino County, California. We used historical harvest records, hunter GPS trackers and camera trap records of mountain lions to model patterns of risk for deer. We then used camera traps to examine deer spatial and temporal activity patterns in response to this variation in risk.

Hunters and mountain lions exhibited distinct, contrasting patterns of spatiotemporal activity. Risk from rifle hunters, who rely on long lines of sight, was highest in open grasslands and near roads and was confined to the daytime. Risk from mountain lions, an ambush predator, was highest in dense shrubland habitat, farther from developed areas, and during the night and crepuscular periods. Areas of human settlement provided a refuge from both hunters and mountain lions. We found no evidence that deer avoided risk in space at the scale of our observations, but deer adjusted their temporal activity patterns to reduce the risk of encounters with humans and mountain lions in areas of higher risk.

Our study demonstrates that interactions between human infrastructure, habitat cover and predator hunting mode can result in distinct spatial patterns of predation risk from hunters and other predators that may lead to trade‐offs for prey species. However, distinct diel activity patterns of predators may create vacant hunting domains that reduce costly trade‐offs for prey. Our study highlights the importance of temporal partitioning as a mechanism of predation risk avoidance.

 
more » « less
NSF-PAR ID:
10446313
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
91
Issue:
1
ISSN:
0021-8790
Format(s):
Medium: X Size: p. 46-60
Size(s):
["p. 46-60"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recolonization of predators to their former ranges is becoming increasingly prevalent. Such recolonization places predators among their prey once again; the latter having lived without predation (from such predators) for a considerable time. This renewed coexistence creates opportunities to explore predation ecology at both fundamental and applied levels. We used a paired experimental design to investigate white‐tailed deer risk allocation in the Upper and Lower Peninsulas (UP and LP) in Michigan, USA. Wolves are functionally absent in the LP, while deer in the UP coexist with a re‐established wolf population. We treated 15 sites each in UP and LP with wolf olfactory cues and observed deer vigilance, activity, and visitation rates at the interface of habitat covariates using remote cameras. Such a paired design across wolf versus no‐wolf areas allowed us to examine indirect predation effects while accounting for confounding parameters such as the presence of other predators and human activity. While wolf urine had no effect across most metrics in both UP and LP, we observed differences in deer activity in areas with versus without wolves. Sites treated with wolf urine in the UP showed a reduction in crepuscular deer activity, compared to control/novel‐scent treated sites. Furthermore, we observed a strong positive effect of vegetation cover on deer vigilance in these sites. This indicates that simulated predator cues likely affect deer vigilance more acutely in denser habitats, which presumably facilitates predation success. Such responses were however absent among deer in the LP that are presumably naïve toward wolf predation. Where human and non‐human predators hunt shared prey, such as in Michigan, predators may constrain human hunting success by increasing deer vigilance. Hunters may avoid such exploitative competition by choosing hunting/bait sites located in open areas. Our results pertaining to fundamental predation ecology have strong applied implications that can promote human–predator coexistence.

     
    more » « less
  2. Abstract

    Global biotic and abiotic threats, particularly from pervasive human activities, are progressively pushing large, apex carnivorous mammals into the functional role of mesopredator. Hunters are now becoming the hunted. Despite marked impacts on these animals and the ecosystems in which they live, little is known about the physiological repercussions of this role downgrading from ultimate to penultimate predator.

    Here we examine how such ecological role reversals alter the physiological processes associated with energy expenditure, and ultimately the cost of survival during peak performance.

    Taxonomic group, preferred habitat and domestication affected the capacity of the oxygen pathway to support high levels of aerobic performance by carnivorous mammals. Fear responses associated with anthropogenic threats also impacted aerobic performance.

    Allometric trends for three energetic metrics [maximum oxygen consumption, field metabolic rates (FMRs) and the cost per stride or stroke], showed distinct trends in aerobic capacity for different evolutionary lineages of mammalian predators. Cursorial canids that chase down prey demonstrated the highest relative maximum oxygen consumption rates (10–25 times resting levels) and FMRs, while ambush predators (i.e. felids) and diving marine mammals had aerobic capacities that were similar to or lower than sedentary domestic mammals of comparable size.

    The maximum energetic cost of performance for apex predators depended on whether the animals were hunters or the hunted. Escape responses were exceptionally costly for marine (narwhalMonodon monoceros) and terrestrial (mountain lionPuma concolor) locomotor specialists, as well as semi‐aquatic (polar bearUrsus maritimus) species; all showed a nearly two‐fold increase in peak energy expenditure when avoiding threats.

    As the duration and frequency of threats to wild species continue to grow, cumulative energetic costs are becoming more apparent. In view of this, attention to the energy demands of apex predators will provide vital predictive power to anticipate mismatches between a species' functional design and human‐induced pressures, and allow for the development of conservation strategies based on how species are built to survive.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  3. Abstract

    Landscapes of fear describe a spatial representation of an animal's perceived risk of predation and the associated foraging costs, while energy landscapes describe the spatial representation of their energetic cost of moving and foraging. Fear landscapes are often dynamic and change based on predator presence and behaviour, and variation in abiotic conditions that modify risk. Energy landscapes are also dynamic and can change across diel, seasonal, and climatic timescales based on variability in temperature, snowfall, wind/current speeds, etc.

    Recently, it was suggested that fear and energy landscapes should be integrated. In this paradigm, the interaction between landscapes relates to prey being forced to use areas of the energy landscape they would avoid if risk were not a factor. However, dynamic energy landscapes experienced by predators must also be considered since they can affect their ability to forage, irrespective of variation in prey behaviour. We propose an additional component to the fear and dynamic energy landscape paradigm that integrates landscapes of both prey and predators, where predator foraging behaviour is modulated by changes in their energyscape.

    Specifically, we integrate the predator's energy landscape into foraging theory that predicts prey patch‐leaving decisions under the threat of predation. We predict that as a predator's energetic cost of foraging increases in a habitat, then the prey's foraging cost of predation and patch quitting harvest rate, will decrease. Prey may also decrease their vigilance in response to increased energetic foraging costs for predators, which will lower giving‐up densities of prey.

    We then provide examples in terrestrial, aerial, and marine ecosystems where we might expect to see these effects. These include birds and sharks which use updrafts that vary based on wind and current speeds, tidal state, or temperature, and terrestrial predators (e.g. wolves) whose landscapes vary seasonally with snow depth or ice cover which may influence their foraging success and even diet selection.

    A predator perspective is critical to considering the combination of these landscapes and their ecological consequences. Dynamic predator energy landscapes could add an additional spatiotemporal component to risk effects, which may cascade through food webs.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  4. Abstract

    Predators may create healthier prey populations by selectively removing diseased individuals. Predators typically prefer some ages of prey over others, which may, or may not, align with those prey ages that are most likely to be diseased.

    The interaction of age‐specific infection and predation has not been previously explored and likely has sizable effects on disease dynamics. We hypothesize that predator cleansing effects will be greater when the disease and predation occur in the same prey age groups.

    We examine the predator cleansing effect using a model where both vulnerability to predators and pathogen prevalence vary with age. We tailor this model to chronic wasting disease (CWD) in mule deer and elk populations in the Greater Yellowstone Ecosystem, with empirical data from Yellowstone grey wolves and cougars.

    Model results suggest that under moderate, yet realistic, predation pressure from cougars and wolves independently, predators may decrease CWD outbreak size substantially and delay the accumulation of symptomatic deer and elk. The magnitude of this effect is driven by the ability of predators to selectively remove late‐stage CWD infections that are likely the most responsible for transmission, but this may not be the age class they typically select. Thus, predators that select for infected young adults over uninfected juveniles have a stronger cleansing effect, and these effects are strengthened when transmission rates increase with increasing prey morbidity. There are also trade‐offs from a management perspective—that is, increasing predator kill rates can result in opposing forces on prey abundance and CWD prevalence.

    Our modelling exploration shows that predators have the potential to reduce prevalence in prey populations when prey age and disease severity are considered, yet the strength of this effect is influenced by predators' selection for demography or body condition. Current CWD management focuses on increasing cervid hunting as the primary management tool, and our results suggest predators may also be a useful tool under certain conditions, but not necessarily without additional impacts on host abundance and demography. Protected areas with predator populations will play a large role in informing the debate over predator impacts on disease.

     
    more » « less
  5. Abstract

    When navigating heterogeneous landscapes, large carnivores must balance trade‐offs between multiple goals, including minimizing energetic expenditure, maintaining access to hunting opportunities and avoiding potential risk from humans. The relative importance of these goals in driving carnivore movement likely changes across temporal scales, but our understanding of these dynamics remains limited.

    Here we quantified how drivers of movement and habitat selection changed with temporal grain for two large carnivore species living in human‐dominated landscapes, providing insights into commonalities in carnivore movement strategies across regions.

    We used high‐resolution GPS collar data and integrated step selection analyses to model movement and habitat selection for African lionsPanthera leoin Laikipia, Kenya and pumasPuma concolorin the Santa Cruz Mountains of California across eight temporal grains, ranging from 5 min to 12 hr. Analyses considered landscape covariates that are related to energetics, resource acquisition and anthropogenic risk.

    For both species, topographic slope, which strongly influences energetic expenditure, drove habitat selection and movement patterns over fine temporal grains but was less important at longer temporal grains. In contrast, avoiding anthropogenic risk during the day, when risk was highest, was consistently important across grains, but the degree to which carnivores relaxed this avoidance at night was strongest for longer term movements. Lions and pumas modified their movement behaviour differently in response to anthropogenic features: lions sped up while near humans at fine temporal grains, while pumas slowed down in more developed areas at coarse temporal grains. Finally, pumas experienced a trade‐off between energetically efficient movement and avoiding anthropogenic risk.

    Temporal grain is an important methodological consideration in habitat selection analyses, as drivers of both movement and habitat selection changed across temporal grain. Additionally, grain‐dependent patterns can reflect meaningful behavioural processes, including how fitness‐relevant goals influence behaviour over different periods of time. In applying multi‐scale analysis to fine‐resolution data, we showed that two large carnivore species in very different human‐dominated landscapes balanced competing energetic and safety demands in largely similar ways. These commonalities suggest general strategies of landscape use across large carnivore species.

     
    more » « less