skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Herbarium specimens reveal that mycorrhizal type does not mediate declining temperate tree nitrogen status over a century of environmental change
Summary Rising atmospheric carbon dioxide concentrations (CO2) and atmospheric nitrogen (N) deposition have contrasting effects on ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) symbioses, potentially mediating forest responses to environmental change.In this study, we evaluated the cumulative effects of historical environmental change on N concentrations and δ15N values in AM plants, EM plants, EM fungi, and saprotrophic fungi using herbarium specimens collected in Minnesota, USA from 1871 to 2016. To better understand mycorrhizal mediation of foliar δ15N, we also analyzed a subset of previously published foliar δ15N values from across the United States to parse the effects of N deposition and CO2rise.Over the last century in Minnesota, N concentrations declined among all groups except saprotrophic fungi. δ15N also declined among all groups of plants and fungi; however, foliar δ15N declined less in EM plants than in AM plants. In the analysis of previously published foliar δ15N values, this slope difference between EM and AM plants was better explained by nitrogen deposition than by CO2rise.Mycorrhizal type did not explain trajectories of plant N concentrations. Instead, plants and EM fungi exhibited similar declines in N concentrations, consistent with declining forest N status despite moderate levels of N deposition.  more » « less
Award ID(s):
2019518
PAR ID:
10479535
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
242
Issue:
4
ISSN:
0028-646X
Format(s):
Medium: X Size: p. 1717-1724
Size(s):
p. 1717-1724
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plants and mycorrhizal fungi form mutualistic relationships that affect how resources flow between organisms and within ecosystems. Common mycorrhizal networks (CMNs) could facilitate preferential transfer of carbon and limiting nutrients, but this remains difficult to predict. Do CMNs favour fungal resource acquisition at the expense of plant resource demands (a fungi‐centric view), or are they passive channels through which plants regulate resource fluxes (a plant‐centric view)?We used stable isotope tracers (13CO2and15NH3), plant traits, and mycorrhizal DNA to quantify above‐ and below‐ground carbon and nitrogen transfer between 18 plant species along a 520‐km latitudinal gradient in the Pacific Northwest, USA.Plant functional type and tissue stoichiometry were the most important predictors of interspecific resource transfer. Of ‘donor’ plants, 98% were13C‐enriched, but we detected transfer in only 2% of ‘receiver’ plants. However, all donors were15N‐enriched and we detected transfer in 81% of receivers. Nitrogen was preferentially transferred to annuals (0.26 ± 0.50 mg N per g leaf mass) compared with perennials (0.13 ± 0.30 mg N per g leaf mass). This corresponded with tissue stoichiometry differences.SynthesisOur findings suggest that plants and fungi that are located closer together in space and with stronger demand for resources over time are more likely to receive larger amounts of those limiting resources. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. Summary While plant δ15N values have been applied to understand nitrogen (N) dynamics, uncertainties regarding intraspecific and temporal variability currently limit their application. We used a 28 yr record of δ15N values from two Mojave Desert populations ofEncelia farinosato clarify sources of population‐level variability.We leveraged > 3500 foliar δ15N observations collected alongside structural, physiological, and climatic data to identify plant and environmental contributors to δ15N values. Additional sampling of soils, roots, stems, and leaves enabled assessment of the distribution of soil N content and δ15N, intra‐plant fractionations, and relationships between soil and plant δ15N values.We observed extensive within‐population variability in foliar δ15N values and found plant age and foliar %N to be the strongest predictors of individual δ15N values. There were consistent differences between root, stem, and leaf δ15N values (spanningc. 3‰), but plant and bulk soil δ15N values were unrelated.Plant‐level variables played a strong role in influencing foliar δ15N values, and interannual relationships between climate and δ15N values were counter to previously recognized spatial patterns. This long‐term record provides insights regarding the interpretation of δ15N values that were not available from previous large‐scale syntheses, broadly enabling more effective application of foliar δ15N values. 
    more » « less
  3. Abstract Plant‐microbial‐herbivore interactions play a crucial role in the structuring and maintenance of plant communities and biodiversity, yet these relationships are complex. In grassland ecosystems, herbivores have the potential to greatly influence the survival, growth and reproduction of plants. However, few studies examine interactions of above‐ and below‐ground grazing and arbuscular mycorrhizal (AM) mycorrhizal symbiosis on plant community structure.We established experimental mesocosms containing an assemblage of eight tallgrass prairie grass and forb species in native prairie soil, maintained under mycorrhizal and nonmycorrhizal conditions, with and without native herbivorous soil nematodes, and with and without grasshopper herbivory. Using factorial analysis of variance and principal component analysis, we examined: (a) the independent and interacting effects of above‐ and below‐ground herbivores on AM symbiosis in tallgrass prairie mesocosms, (b) independent and interacting effects of above‐ and below‐ground herbivores and mycorrhizal fungi on plant community structure and (c) potential influences of mycorrhizal responsiveness of host plants on herbivory tolerance and concomitant shifts in plant community composition.Treatment effects were characterized by interactions between AM fungi and both above‐ground and below‐ground herbivores, while herbivore effects were additive. The dominance of mycorrhizal‐dependent C4grasses in the presence of AM symbiosis was increased (p < 0.0001) by grasshopper herbivory but reduced (p < 0.0001) by nematode herbivory. Cool‐season C3grasses exhibited a competitive release in the absence of AM symbiosis but this effect was largely reversed in the presence of grasshopper herbivory. Forbs showed species‐specific responses to both AM fungal inoculation and the addition of herbivores. Biomass of the grazing‐avoidant, facultatively mycotrophic forbBrickellia eupatorioidesincreased (p < 0.0001) in the absence of AM symbiosis and with grasshopper herbivory, while AM‐related increases in the above‐ground biomass of mycorrhizal‐dependent forbsRudbeckia hirtaandSalvia azureawere eradicated (p < 0.0001) by grasshopper herbivory. In contrast, nematode herbivory enhanced (p = 0.001) the contribution ofSalvia azureato total biomass.Synthesis. Our research indicates that arbuscular mycorrhizal symbiosis is the key driver of dominance of C4grasses in the tallgrass prairie, with foliar and root herbivory being two mechanisms for maintenance of plant diversity. 
    more » « less
  4. Summary Natural selection favors growth by selecting a combination of plant traits that maximize photosynthetic CO2assimilation at the lowest combined carbon costs of resource acquisition and use. We quantified how soil nutrient availability, plant nutrient acquisition strategies, and aridity modulate the variability in plant costs of nutrient acquisition relative to water acquisition (β).We used an eco‐evolutionary optimality framework and a global carbon isotope dataset to quantify β.Under low soil nitrogen‐to‐carbon (N : C) ratios, a mining strategy (symbioses with ectomycorrhizal and ericoid mycorrhizal fungi) reduced β by mining organic nitrogen, compared with a scavenging strategy (symbioses with arbuscular mycorrhizal fungi). Conversely, under high N : C ratios, scavenging strategies reduced β by effectively scavenging soluble nitrogen, compared with mining strategies. N2‐fixing plants did not exhibit reduced β under low N : C ratios compared with non‐N2‐fixing plants. Moisture increased β only in plants using a scavenging strategy, reflecting direct impacts of aridity on the carbon costs of maintaining transpiration in these plants. Nitrogen and phosphorus colimitation further modulated β.Our findings provide a framework for simulating the variability of plant economics due to plant nutrient acquisition strategies in earth system models. 
    more » « less
  5. Abstract Ectomycorrhizal (EM) effects on forest ecosystem carbon (C) and nitrogen (N) cycling are highly variable, which may be due to underappreciated functional differences among EM‐associating trees. We hypothesise that differences in functional traits among EM tree genera will correspond to differences in soil organic matter (SOM) dynamics.We explored how differences among three genera of angiosperm EM trees (Quercus,Carya, andTilia) in functional traits associated with leaf litter quality, resource use and allocation patterns, and microbiome assembly related to overall soil biogeochemical properties.We found consistent differences among EM tree genera in functional traits.Quercustrees had lower litter quality, lower δ13C in SOM, higher δ15N in leaf tissues, greater oxidative extracellular enzyme activities, and higher EM fungal diversity thanTiliatrees, whileCaryatrees were often intermediary. These functional traits corresponded to overall SOM‐C and N dynamics and soil fungal and bacterial community composition.Our findings suggest that trait variation among EM‐associating tree species should be an important consideration in assessing plant–soil relationships such that EM trees cannot be categorised as a unified functional guild. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less