skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The superluminous Type IIn supernova ASASSN-15ua: part of a continuum in extreme precursor mass-loss
ABSTRACT We present a series of ground-based photometry and spectroscopy of the superluminous Type IIn supernova (SN) ASASSN-15ua, which shows evidence for strong interaction with pre-existing dense circumstellar material (CSM). Our observations constrain the speed, mass-loss rate, and extent of the progenitor wind shortly before explosion. A narrow P Cygni absorption component reveals a progenitor wind speed of ∼100 km s−1. As observed in previous SNe IIn, the intermediate-width H α emission became more asymmetric and blueshifted over time, suggesting either asymmetric CSM, an asymmetric explosion, or increasing selective extinction from dust within the post-shock shell or SN ejecta. Based on the CSM radius and speed, we find that the progenitor suffered extreme eruptive mass-loss with a rate of 0.1–1 M⊙ yr−1 during the ∼12 yr immediately before the death of the star that imparted ∼ 1048 erg of kinetic energy to the CSM. Integrating its V-band light curve over the first 170 d after discovery, we find that ASASSN-15ua radiated at least 3 × 1050 erg in visual light alone, giving a lower limit to the total radiated energy that may have approached 1051 erg. ASASSN-15ua exhibits many similarities to two well-studied superluminous SNe IIn: SN 2006tf and SN 2010jl. Based on a detailed comparison of these three, we find that ASASSN-15ua falls in between these two events in a wide variety of observed properties and derived physical parameters, illustrating a continuum of behaviour across superluminous SNe IIn.  more » « less
Award ID(s):
2206532 2209451
PAR ID:
10479595
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 7767-7780
Size(s):
p. 7767-7780
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract While the subclass of interacting supernovae (SNe) with narrow hydrogen emission lines (Type IIn supernovae (SNe IIn)) consists of some of the longest-lasting and brightest supernovae (SNe) ever discovered, their progenitors are still not well understood. Investigating SNe IIn as they emit across the electromagnetic spectrum is the most robust way to understand the progenitor evolution before the explosion. This work presents X-ray, optical, infrared, and radio observations of the strongly interacting Type IIn supernova, SN 2020ywx, covering a period >1200 days after discovery. Through multiwavelength modeling, we find that the progenitor of 2020ywx was losing mass at ∼10−2–10−3Myr−1for at least 100 yr pre-explosion using the circumstellar medium (CSM) speed of 120 km s−1measured from optical and near-infrared (NIR) spectra. Despite the similar magnitude of mass loss measured in different wavelength ranges, we find discrepancies between the X-ray and optical/radio-derived mass-loss evolution, which suggest asymmetries in the CSM. Furthermore, we find evidence for dust formation due to the combination of a growing blueshift in optical emission lines and NIR continuum emission which we fit with blackbodies at ∼1000 K. Based on the observed elevated mass loss over more than 100 yr and the configuration of the CSM inferred from the multiwavelength observations, we invoke binary interaction as the most plausible mechanism to explain the overall mass-loss evolution. SN 2020ywx is thus a case that may support the growing observational consensus that SNe IIn mass loss is explained by binary interaction. 
    more » « less
  2. null (Ed.)
    ABSTRACT ASASSN-18am/SN 2018gk is a newly discovered member of the rare group of luminous, hydrogen-rich supernovae (SNe) with a peak absolute magnitude of MV ≈ −20 mag that is in between normal core-collapse SNe and superluminous SNe. These SNe show no prominent spectroscopic signatures of ejecta interacting with circumstellar material (CSM), and their powering mechanism is debated. ASASSN-18am declines extremely rapidly for a Type II SN, with a photospheric-phase decline rate of ∼6.0 mag (100 d)−1. Owing to the weakening of H i and the appearance of He i in its later phases, ASASSN-18am is spectroscopically a Type IIb SN with a partially stripped envelope. However, its photometric and spectroscopic evolution shows significant differences from typical SNe IIb. Using a radiative diffusion model, we find that the light curve requires a high synthesized 56Ni mass $$M_{\rm Ni} \sim 0.4\, \rm {M_{\odot }}$$ and ejecta with high kinetic energy Ekin = (7–10) × 1051 erg. Introducing a magnetar central engine still requires $$M_{\rm Ni} \sim 0.3\, \rm {M_{\odot }}$$ and Ekin = 3 × 1051 erg. The high 56Ni mass is consistent with strong iron-group nebular lines in its spectra, which are also similar to several SNe Ic-BL with high 56Ni yields. The earliest spectrum shows ‘flash ionization’ features, from which we estimate a mass-loss rate of $$\dot{M}\approx 2\times 10^{-4} \, \rm \rm {M_{\odot }}\,yr^{-1}$$. This wind density is too low to power the luminous light curve by ejecta–CSM interaction. We measure expansion velocities as high as 17 000 $$\rm {\, km\, s^{-1}}$$ for Hα, which is remarkably high compared to other SNe II. We estimate an oxygen core mass of 1.8–3.4 M⊙ using the [O i] luminosity measured from a nebular-phase spectrum, implying a progenitor with a zero-age main-sequence mass of 19–26 M⊙. 
    more » « less
  3. ABSTRACT We present the long-term photometric and spectroscopic analysis of a transitioning SN IIn/Ibn from –10.8 d to 150.7 d post V-band maximum. SN 2021foa shows prominent He i lines comparable in strength to the H $$\alpha$$ line around peak, placing SN 2021foa between the SN IIn and SN Ibn populations. The spectral comparison shows that it resembles the SN IIn population at pre-maximum, becomes intermediate between SNe IIn/Ibn, and at post-maximum matches with SN IIn 1996al. The photometric evolution shows a precursor at –50 d and a light curve shoulder around 17 d. The peak luminosity and colour evolution of SN 2021foa are consistent with most SNe IIn and Ibn in our comparison sample. SN 2021foa shows the unique case of an SN IIn where the narrow P-Cygni in H $$\alpha$$ becomes prominent at 7.2 d. The H $$\alpha$$ profile consists of a narrow (500–1200 km s$$^{-1}$$) component, intermediate width (3000–8000 km s$$^{-1}$$) and broad component in absorption. Temporal evolution of the H $$\alpha$$ profile favours a disc-like CSM geometry. Hydrodynamical modelling of the light curve well reproduces a two-component CSM structure with different densities ($$\rho \propto$$ r$$^{-2}$$–$$\rho \propto$$ r$$^{-5}$$), mass-loss rates (10$$^{-3}$$–10$$^{-1}$$ M$$_{\odot }$$ yr$$^{-1}$$) assuming a wind velocity of 1000 km s$$^{-1}$$ and having a CSM mass of 0.18 M$$_{\odot }$$. The overall evolution indicates that SN 2021foa most likely originated from an LBV star transitioning to a WR star with the mass-loss rate increasing in the period from 5 to 0.5 yr before the explosion or it could be due to a binary interaction. 
    more » « less
  4. Abstract Type IIn supernovae (SNe IIn) are a highly heterogeneous subclass of core-collapse supernovae, spectroscopically characterized by signatures of interaction with a dense circumstellar medium (CSM). Here, we systematically model the light curves of 142 archival SNe IIn using the Modular Open Source Fitter for Transients. We find that the observed and inferred properties of SN IIn are diverse, but there are some trends. The typical supernova CSM is dense (∼10−12g cm−3) with highly diverse CSM geometry, with a median CSM mass of ∼1M. The ejecta are typically massive (≳10M), suggesting massive progenitor systems. We find positive correlations between the CSM mass and the rise and fall times of SNe IIn. Furthermore, there are positive correlations between the rise time and fall times and ther-band luminosity. We estimate the mass-loss rates of our sample (where spectroscopy is available) and find a high median mass-loss rate of ∼10−2Myr−1, with a range between 10−3and 1Myr−1. These mass-loss rates are most similar to the mass loss from great eruptions of luminous blue variables, consistent with the direct progenitor detections in the literature. We also discuss the role that binary interactions may play, concluding that at least some of our SNe IIn may be from massive binary systems. Finally, we estimate a detection rate of 1.6 × 105yr−1in the upcoming Legacy Survey of Space and Time at the Vera C. Rubin Observatory. 
    more » « less
  5. Abstract We present analysis of the plateau and late-time phase properties of a sample of 39 Type II supernovae (SNe II) that show narrow, transient, high-ionization emission lines (i.e., “IIn-like”) in their early-time spectra from interaction with confined, dense circumstellar material (CSM). Originally presented by W. V. Jacobson-Galán et al., this sample also includes multicolor light curves and spectra extending to late-time phases of 35 SNe with no evidence for IIn-like features at <2 days after first light. We measure photospheric phase light-curve properties for the distance-corrected sample and find that SNe II with IIn-like features have significantly higher luminosities and decline rates at +50 days than the comparison sample, which could be connected to inflated progenitor radii, lower ejecta mass, and/or persistent CSM interaction. However, we find no statistical evidence that the measured plateau durations and56Ni masses of SNe II with and without IIn-like features arise from different distributions. We estimate progenitor zero-age main-sequence (ZAMS) masses for all SNe with nebular spectroscopy through spectral model comparisons and find that most objects, both with and without IIn-like features, are consistent with progenitor masses ≤12.5M. Combining progenitor ZAMS masses with CSM densities inferred from early-time spectra suggests multiple channels for enhanced mass loss in the final years before core collapse, such as a convection-driven chromosphere or binary interaction. Finally, we find spectroscopic evidence for ongoing ejecta-CSM interaction at radii >1016cm, consistent with substantial progenitor mass-loss rates of ∼10−4–10−5Myr−1(vw < 50 km s−1) in the final centuries to millennia before explosion. 
    more » « less