skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Single-Mask Fabrication of Sharp SiOx nanocones
The patterning of silicon and silicon oxide nanocones onto the surfaces of devices introduces interesting phenomena such as anti-reflection and super-transmissivity. While silicon nanocone formation is well-documented, current techniques to fabricate silicon oxide nanocones either involve complex fabrication procedures, non-deterministic placement, or poor uniformity. Here, we introduce a single-mask dry etching procedure for the fabrication of sharp silicon oxide nanocones with smooth sidewalls and deterministic distribution using electron beam lithography. Silicon oxide films deposited using plasma-enhanced chemical vapor deposition are etched using a thin alumina hard mask of selectivity > 88, enabling high aspect ratio nanocones with smooth sidewalls and arbitrary distribution across the target substrate. We further introduce a novel multi-step dry etching technique to achieve ultra-sharp amorphous silicon oxide nanocones with tip diameters of ~10 nm. The processes presented in this work may have applications in the fabrication of amorphous nanocone arrays onto arbitrary substrates or as nanoscale probes.  more » « less
Award ID(s):
2128534
PAR ID:
10479626
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Semiconductor Manufacturing
ISSN:
0894-6507
Subject(s) / Keyword(s):
angled sidewalls, dry etch, nanocones, silica, silicon oxide, single-mask
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stoichiometric silicon nitride has emerged as a widely used integrated photonic material owing to its high index of refraction, nonlinear optical properties, and broad transparency window spanning visible to mid-IR frequencies. However, silicon nitride is generally more resistant to reactive ion etching than are typical etch masks made of polymer-based resist. This necessitates resist layers that are significantly thicker than the silicon nitride and results in mask patterns which are tall and narrow. These high-aspect-ratio patterns inhibit the plasma transport of reactive ion etching, which leads to difficulties in accurately reproducing dimensions and creating well-defined, vertical waveguide sidewalls. In this work, we overcome these challenges by developing a metallic etch mask deposited via metal lift-off that provides a 30 : 1 nitride-to-metal etch rate ratio, representing a near 45-fold reduction in the required mask thickness. We demonstrate the validity of this technique by etching microring resonators with near-vertical waveguide sidewalls and intrinsic quality factors of over 1 million. Leveraging the low optical loss of our resonators, we generate optical frequency combs with more than an octave of bandwidth and dual dispersive waves. These results establish metal lift-off as a viable and easy-to-implement technique capable of producing low optical loss waveguides. 
    more » « less
  2. We report a two-step etching process involving inductively coupled plasma (ICP) etching followed by wet chemical etching to achieve smooth and vertical sidewalls, being beneficial for AlGaN-based electronic and optoelectronic devices. The influence of ICP power on the roughness of etched sidewalls is investigated. It is observed that ICP etching alone does not produce smooth sidewalls, necessitating subsequent wet chemical etching using tetramethyl ammonium hydroxide (TMAH) to enhance sidewall smoothness and reduce tilt angle. The morphological evolution of the etched sidewalls with wet etch time for the device structures is also thoroughly investigated. Consistent etch results are achieved for AlxGa1-xN alloys with Al compositions up to 70%, indicating the effectiveness of our etching process. 
    more » « less
  3. This study presents a comprehensive analysis of the etching effects on β-Ga2O3 using two methods: H2_N2 (a mixture of hydrogen and nitrogen) etching and triethylgallium (TEGa) in situ etching performed in a metal-organic chemical vapor deposition system. By employing a mix of H2 and N2 gases at varying chamber pressures and maintaining a constant etching temperature of 750 °C, we investigated the etching dynamics across three different β-Ga2O3 orientations: (010), (001), and (2¯01). Field emission scanning electron microscopy analysis showed that the etching behavior of β-Ga2O3 depends on the crystal orientation, with the (010) orientation showing notably uniform and smooth surfaces, indicating its suitability for vertical device applications. High-aspect-ratio β-Ga2O3 fin arrays were fabricated on (010) substrates using H2_N2 etching, yielding fin structures with widths of 2 μm and depths of 3.1 μm, along with smooth and well-defined sidewalls. The etching process achieved exceptionally high etch rates (>18 μm/h) with a strong dependence on pressure and sidewall orientation, revealing the trade-off between etch depth and surface smoothness. Separately, TEGa in situ etching was investigated as an alternative etching technique for both β-Ga2O3 and β-(AlxGa1−x)2O3 films. The results revealed that the (010) orientation exhibited relatively high etching rates while maintaining smoother sidewalls and top surfaces, making it favorable for device processing. In contrast, the (001) orientation showed strong resistance to TEGa etching. Furthermore, Al-incorporated β-(AlxGa1−x)2O3 films showed substantially lower etch rates compared to pure β-Ga2O3, suggesting their potential use as an effective etch-stop layer in advanced device fabrication. 
    more » « less
  4. We report a method to fabricate silicon micro–nanostructures of different shapes by tuning the number of layers and the sizes of self-assembled polystyrene beads, which serve as the mask, and by tuning the reactive ion etching (RIE) time. This process is simple, scalable, and inexpensive without using any sophisticated nanomanufacturing equipment. Specifically, in this work, we demonstrate the proposed process by fabricating silicon micro- or nanoflowers, micro- or nanobells, nanopyramids, and nanotriangles using a self-assembled monolayer or bilayer of polystyrene beads as the mask. We also fabricate flexible micro–nanostructures by using silicon molds with micro–nanostructures. Finally, we demonstrate the fabrication of bandage-type electrochemical sensors with micro–nanostructured working electrodes for detecting dopamine, a neurotransmitter related to stress and neurodegenerative diseases in artificial sweat. All these demonstrations indicate that the proposed process provides a low-cost, easy-to-use approach for fabricating silicon micro–nanostructures and flexible micro–nanostructures, thus paving a way for developing wearable micro–nanostructures enabled sensors for a variety of applications in an efficient manner. 
    more » « less
  5. In this work, we report on the anisotropic etching characteristics of β-Ga2O3 using triethylgallium (TEGa) performed in situ within an MOCVD chamber. At sufficiently high substrate temperatures, TEGa can act as a strong etchant for β-Ga2O3 utilizing the suboxide reaction between Ga and Ga2O3 [4 Ga(s) + Ga2O3 (s) → 3Ga2O (g)]. We observe that due to the monoclinic crystal structure of β-Ga2O3, TEGa etching on both (010) and (001) substrates is highly anisotropic in nature, in terms of both sidewall roughness and lateral etch rate. Smooth sidewalls are only obtained along crystal orientations that minimize sidewall surface energy. Utilizing this technique, we also demonstrate deep sub-micrometer fins with smooth sidewalls and high aspect ratios. Furthermore, we also demonstrate the damage-free nature of TEGa etching by fabricating Schottky diodes on the etched surface, which display no change in the net donor concentration. 
    more » « less