We provide a general framework for computing mixing times of finite Markov chains when its minimal ideal is left zero. Our analysis is based on combining results by Brown and Diaconis with our previous work on stationary distributions of finite Markov chains. We introduce a new Markov chain on linear extensions of a poset with n vertices, which is a variant of the promotion Markov chain of Ayyer, Klee and the last author, and show that it has a mixing time O(n log n).
more »
« less
Metastable Mixing of Markov Chains: Efficiently Sampling Low Temperature Exponential Random Graphs
In this paper we consider the problem of sampling from the low-temperature exponential random graph model (ERGM). The usual approach is via Markov chain Monte Carlo, but Bhamidi et al. showed that any local Markov chain suffers from an exponentially large mixing time due to metastable states. We instead consider metastable mixing, a notion of approximate mixing relative to the stationary distribution, for which it turns out to suffice to mix only within a collection of metastable states. We show that the Glauber dynamics for the ERGM at any temperature -- except at a lower-dimensional critical set of parameters -- when initialized at G(n,p) for the right choice of p has a metastable mixing time of O(n^2logn) to within total variation distance exp(−Ω(n)).
more »
« less
- Award ID(s):
- 1940205
- PAR ID:
- 10479643
- Publisher / Repository:
- Institute of Mathematical Statistics
- Date Published:
- Journal Name:
- The Annals of applied probability
- ISSN:
- 1050-5164
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We provide a general framework for computing mixing times of finite Markov chains when its minimal ideal is left zero. Our analysis is based on combining results by Brown and Diaconis with our previous work on stationary distributions of finite Markov chains. We introduce a new Markov chain on linear extensions of a poset with n vertices, which is a variant of the promotion Markov chain of Ayyer, Klee and the last author, and show that it has a mixing time O(n log n).more » « less
-
For general spin systems, we prove that a contractive coupling for an arbitrary local Markov chain implies optimal bounds on the mixing time and the modified log-Sobolev constant for a large class of Markov chains including the Glauber dynamics, arbitrary heat-bath block dynamics, and the Swendsen-Wang dynamics. This reveals a novel connection between probabilistic techniques for bounding the convergence to stationarity and analytic tools for analyzing the decay of relative entropy. As a corollary of our general results, we obtain O(n log n) mixing time and Ω(1/n) modified log-Sobolev constant of the Glauber dynamics for sampling random q-colorings of an n-vertex graph with constant maximum degree Δ when q > (11/6–∊0)Δ for some fixed ∊0 > 0. We also obtain O(log n) mixing time and Ω(1) modified log-Sobolev constant of the Swendsen-Wang dynamics for the ferromagnetic Ising model on an n-vertex graph of constant maximum degree when the parameters of the system lie in the tree uniqueness region. At the heart of our results are new techniques for establishing spectral independence of the spin system and block factorization of the relative entropy. On one hand we prove that a contractive coupling of any local Markov chain implies spectral independence of the Gibbs distribution. On the other hand we show that spectral independence implies factorization of entropy for arbitrary blocks, establishing optimal bounds on the modified log-Sobolev constant of the corresponding block dynamics.more » « less
-
Efficient algorithms for approximate counting and sampling in spin systems typically apply in the so‐called high‐temperature regime, where the interaction between neighboring spins is “weak.” Instead, recent work of Jenssen, Keevash, and Perkins yields polynomial‐time algorithms in the low‐temperature regime on bounded‐degree (bipartite) expander graphs using polymer models and the cluster expansion. In order to speed up these algorithms (so the exponent in the run time does not depend on the degree bound) we present a Markov chain for polymer models and show that it is rapidly mixing under exponential decay of polymer weights. This yields, for example, an‐time sampling algorithm for the low‐temperature ferromagnetic Potts model on bounded‐degree expander graphs. Combining our results for the hard‐core and Potts models with Markov chain comparison tools, we obtain polynomial mixing time for Glauber dynamics restricted to appropriate portions of the state space.more » « less
-
Megow, Nicole; Smith, Adam (Ed.)We study the mixing time of the single-site update Markov chain, known as the Glauber dynamics, for generating a random independent set of a tree. Our focus is obtaining optimal convergence results for arbitrary trees. We consider the more general problem of sampling from the Gibbs distribution in the hard-core model where independent sets are weighted by a parameter λ > 0; the special case λ = 1 corresponds to the uniform distribution over all independent sets. Previous work of Martinelli, Sinclair and Weitz (2004) obtained optimal mixing time bounds for the complete Δ-regular tree for all λ. However, Restrepo et al. (2014) showed that for sufficiently large λ there are bounded-degree trees where optimal mixing does not hold. Recent work of Eppstein and Frishberg (2022) proved a polynomial mixing time bound for the Glauber dynamics for arbitrary trees, and more generally for graphs of bounded tree-width. We establish an optimal bound on the relaxation time (i.e., inverse spectral gap) of O(n) for the Glauber dynamics for unweighted independent sets on arbitrary trees. Moreover, for λ ≤ .44 we prove an optimal mixing time bound of O(n log n). We stress that our results hold for arbitrary trees and there is no dependence on the maximum degree Δ. Interestingly, our results extend (far) beyond the uniqueness threshold which is on the order λ = O(1/Δ). Our proof approach is inspired by recent work on spectral independence. In fact, we prove that spectral independence holds with a constant independent of the maximum degree for any tree, but this does not imply mixing for general trees as the optimal mixing results of Chen, Liu, and Vigoda (2021) only apply for bounded degree graphs. We instead utilize the combinatorial nature of independent sets to directly prove approximate tensorization of variance/entropy via a non-trivial inductive proof.more » « less
An official website of the United States government

