skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elemental partitioning and corrosion resistance of Ni–Cr alloys revealed by accurate ab-initio thermodynamic and electrochemical calculations
Abstract Elemental partitioning during thermal processing can significantly affect the corrosion resistance of bulk alloys operating in aggressive electrochemical environments, for which, despite decades of experimental and theoretical studies, the thermodynamic and electrochemical mechanisms still lack accurate quantitative descriptions. Here, we formulate an ab initio thermodynamic model to obtain the composition- and temperature-dependent free energies of formation (ΔfG) for Ni–Cr alloys, a prototypical group of corrosion-resistant metals, and discover two equilibrium states that produce the driving forces for the elemental partitioning in Ni–Cr. The results are in quantitative agreement with the experimental studies on the thermodynamic stability of Ni–Cr. We further construct electrochemical (potential–pH) diagrams by obtaining the required ΔfGvalues of native oxides and (oxy)hydroxides using high-fidelity ab-initio calculations that include exact electronic exchange and phononic contributions. We then analyze the passivation and electrochemical trends of Ni–Cr alloys, which closely explain various oxide-film growth and corrosion behaviors observed on alloy surfaces. We finally determine the optimal Cr content range of 14–34 at%, which provides the Ni–Cr alloys with both the preferred heat-treatment stability and superior corrosion resistance. We conclude by discussing the consequences of these findings on other Ni–Cr alloys with more complex additives, which can guide the further optimization of industrial Ni–Cr-based alloys.  more » « less
Award ID(s):
2208848 2208865
PAR ID:
10479750
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Materials Degradation
Volume:
7
Issue:
1
ISSN:
2397-2106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrochemical behavior of Ni alloys (Ni, β-NiAl, β-NiAl/Cr) was investigated in LiCl-KCl-Na2SO4 electrolyte at 700 °C under three gaseous atmospheres (Ar, O2, O2-0.1%SO2). In oxidizing atmospheres, Ni rapidly degraded due to instability of NiO, and alumina-rich scale on β-NiAl provided limited protection against hot corrosion (e.g., cracks in the scale under O2-0.1%SO2); however, the addition of both Al and Cr resulted in enhanced corrosion resistance by forming a mixed-oxide (Al2O3-Cr2O3) scale in oxidizing atmospheres. In hot corrosion processes of Ni alloys, the formation and stability of oxide scales in the molten salt were influenced by gaseous atmosphere and alloying elements. 
    more » « less
  2. Ni-Cr based super-alloys have exceptional corrosion resistance, which is further improved with Mo alloying. The correlation between passive layer performance and composition was studied to gain a deeper mechanistic understanding of the role of Mo by comparing the behavior of Ni-22Cr to Ni-22Cr-6Mo (wt%) alloys. The passive layers were formed using galvanostatic holds to create fast and slow growth conditions using high and low current densities. A potentiostatic hold was added to initiate exposure aging. The passive film was characterized using electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), atomic emission spectro-electrochemistry (AESEC), and X-ray photoelectron spectroscopy (XPS). Combined electrochemical and XPS characterization offered insight in cation concentrations and stratification, bonding states (oxide, hydroxide), and their modulation as a function of electrochemical conditions and performance. Most importantly: (i) Mo addition enhanced Cr(III) bound in oxide, (ii) fast growth conditions resulted in less corrosion resistant films, and (iii) exposure aging increased Cr-enrichment and reduced stratification of Mo-cations. The correlation between passive film performance and Cr, Ni, and Mo oxidation states, bonding, oxide-hydroxide contributions, and stratification is discussed. Generally accepted correlations, such as Cr-cation concentration and performance of the passive layer, have to be reexamined in order to account for the complex chemical make-up of the passive layer. 
    more » « less
  3. Abstract Corrosion is a ubiquitous failure mode of materials. Often, the progression of localized corrosion is accompanied by the evolution of porosity in materials previously reported to be either three-dimensional or two-dimensional. However, using new tools and analysis techniques, we have realized that a more localized form of corrosion, which we call 1D wormhole corrosion, has previously been miscategorized in some situations. Using electron tomography, we show multiple examples of this 1D and percolating morphology. To understand the origin of this mechanism in a Ni-Cr alloy corroded by molten salt, we combined energy-filtered four-dimensional scanning transmission electron microscopy and ab initio density functional theory calculations to develop a vacancy mapping method with nanometer-resolution, identifying a remarkably high vacancy concentration in the diffusion-induced grain boundary migration zone, up to 100 times the equilibrium value at the melting point. Deciphering the origins of 1D corrosion is an important step towards designing structural materials with enhanced corrosion resistance. 
    more » « less
  4. Abstract Ni-based superalloys offer a unique combination of mechanical properties, corrosion resistance and high temperature performance. Near ambient pressure X-ray photoelectron spectroscopy was used to study in operando the initial steps of oxidation for Ni-5Cr, Ni-15Cr, Ni-30Cr and Ni-15Cr-6W at 500 °C, p(O 2 )=10 −6 mbar. The comparison of oxide evolution for these alloys quantifies the outsized impact of W in promoting chromia formation. For the binary alloys an increase in chromia due to Cr-surface enrichment is followed by NiO nucleation and growth thus seeding a dual-layer structure. The addition of W (Ni-15Cr-6W) shifts the reaction pathways towards chromia thus enhancing oxide quality. Density functional theory calculations confirm that W atoms adjacent to Cr create highly favorable oxygen adsorption sites. The addition of W supercharges the reactivity of Cr with oxygen essentially funneling oxygen atoms into Cr sites. The experimental results are discussed in the context of surface composition, chemistry, reactant fluxes, and microstructure. 
    more » « less
  5. The viability of the electrolysis of water currently relies on expensive catalysts such as Pt that are far too impractical for industrial-scale use. Thus, there is considerable interest in developing low-cost, earth-abundant nanomaterials and their alloys as a potential alternative to existing standard catalysts. To address this issue, a synergistic approach involving theory and experiment was carried out. The former, based on density functional theory, was conducted to guide the experiment in selecting the ideal dopant and optimal concentration by focusing on 3d, 4d, and 5d elements as dopants on Ni (001) surface. Subsequently, a series of Ni1−xCrx(x= 0.01–0.09) alloy nanocrystals (NCs) with size ranging from 8.3 ± 1.6–18.2 ± 3.2 nm were colloidally synthesized to experimentally investigate the hydrogen evolution reaction (HER) activity. A compositional dependent trend for electrocatalytic activity was observed from both approaches with Ni0.92Cr0.08NCs showed the lowest ΔGHvalue and the lowest overpotential (η−10) at −10 mA cm−2current density (j), suggesting the highest HER activity among all compositions studied. Among alloy NCs, the highest performing Ni0.92Cr0.08composition displayed a mixed Volmer–Heyrovsky HER mechanism, the lowest Tafel slope, and improved stability in alkaline solutions. This study provides critical insights into enhancing the performance of earth-abundant metals through doping-induced electronic structure variation, paving the way for the design of high-efficiency catalysts for water electrolysis. 
    more » « less