skip to main content


Title: Unraveling the role of tungsten as a minor alloying element in the oxidation NiCr alloys
Abstract Ni-based superalloys offer a unique combination of mechanical properties, corrosion resistance and high temperature performance. Near ambient pressure X-ray photoelectron spectroscopy was used to study in operando the initial steps of oxidation for Ni-5Cr, Ni-15Cr, Ni-30Cr and Ni-15Cr-6W at 500 °C, p(O 2 )=10 −6 mbar. The comparison of oxide evolution for these alloys quantifies the outsized impact of W in promoting chromia formation. For the binary alloys an increase in chromia due to Cr-surface enrichment is followed by NiO nucleation and growth thus seeding a dual-layer structure. The addition of W (Ni-15Cr-6W) shifts the reaction pathways towards chromia thus enhancing oxide quality. Density functional theory calculations confirm that W atoms adjacent to Cr create highly favorable oxygen adsorption sites. The addition of W supercharges the reactivity of Cr with oxygen essentially funneling oxygen atoms into Cr sites. The experimental results are discussed in the context of surface composition, chemistry, reactant fluxes, and microstructure.  more » « less
Award ID(s):
2004326
NSF-PAR ID:
10341108
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
npj Materials Degradation
Volume:
6
Issue:
1
ISSN:
2397-2106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nickel (Ni)‐based superalloys for high‐temperature applications are often designed to form a continuous and slow‐growing oxide scale by adding Al and Cr and other beneficial elements. In the present work, the critical Al concentration in Ni–Al alloys needed to establish an α‐Al2O3scale in contrast to internal oxide formation is predicted as a function of temperature by means of the CALPHAD approach coupled with models in the literature, which account for the thermodynamics and kinetics of oxidation. The present thermodynamic remodeling of the Ni–O system results in a better agreement with experimental data of oxygen solubility in Ni at high temperatures. The oxygen solubility is combined with kinetic parameters to determine oxygen permeability in Ni, and the critical Al concentration needed to establish an α‐Al2O3scale at a given exposure temperature. Good agreement is found with available experimental data for both oxygen permeability and critical Al concentration, indicating the capacity of the CALPHAD approach to tailor oxidation resistance for materials of interest using thermodynamic and kinetic knowledge.

     
    more » « less
  2. Exposure testing was performed on CoCrFeMnNi equiatomic high entropy alloy (HEA) produced via directed energy deposition additive manufacturing in NaNO3-KNO3(60–40 wt%) molten salt at 500 °C for 50 h to evaluate the corrosion performance and oxide film chemistry of the HEA. Potentiodynamic electrochemical corrosion testing, scanning electron microscopy, focused ion beam milling coupled with energy dispersive spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectroscopy were used to analyze the corrosion behavior and chemistry of the HEA/nitrate molten salt system. The CoCrFeMnNi HEA exhibited a higher passive current density during potentiodynamic polarization testing than steel alloys SS316L and 4130 and the high-Ni alloy 800 H in identical conditions. The oxide film was primarily composed of a (Mn,Co,Ni)Fe2O4spinel with a vertical plate-like morphology at the surface. Cr and Ni were found to be totally depleted at the outer surface of the oxide and dissolved in high concentrations in the molten salt. While Cr was expected to dissolve into the molten salt, the high concentration of dissolved Ni has not been observed with traditional alloys, suggesting that Ni is less stable in the spinel when Mn and Co are present.

     
    more » « less
  3. Electrochemical behavior of Ni alloys (Ni, β-NiAl, β-NiAl/Cr) was investigated in LiCl-KCl-Na2SO4 electrolyte at 700 °C under three gaseous atmospheres (Ar, O2, O2-0.1%SO2). In oxidizing atmospheres, Ni rapidly degraded due to instability of NiO, and alumina-rich scale on β-NiAl provided limited protection against hot corrosion (e.g., cracks in the scale under O2-0.1%SO2); however, the addition of both Al and Cr resulted in enhanced corrosion resistance by forming a mixed-oxide (Al2O3-Cr2O3) scale in oxidizing atmospheres. In hot corrosion processes of Ni alloys, the formation and stability of oxide scales in the molten salt were influenced by gaseous atmosphere and alloying elements. 
    more » « less
  4. null (Ed.)
    Sr(Ti 0.3 Fe 0.7 )O 3−δ (STF) and the associated exsolution electrodes Sr 0.95 (Ti 0.3 Fe 0.63 Ru 0.07 )O 3−δ (STFR), or Sr 0.95 (Ti 0.3 Fe 0.63 Ni 0.07 )O 3−δ (STFN) are alternatives to Ni-based cermet fuel electrodes for solid oxide electrochemical cells (SOCs). They can provide improved tolerance to redox cycling and fuel impurities, and may allow direct operation with hydrocarbon fuels. However, such perovskite-oxide-based electrodes present processing challenges for co-sintering with thin electrolytes to make fuel electrode supported SOCs. Thus, they have been mostly limited to electrolyte-supported SOCs. Here, we report the first example of the application of perovskite oxide fuel electrodes in novel oxygen electrode supported SOCs (OESCs) with thin YSZ electrolytes, and demonstrate their excellent performance. The OESCs have La 0.8 Sr 0.2 MnO 3−δ –Zr 0.92 Y 0.16 O 2−δ (LSM–YSZ) oxygen electrode-supports that are enhanced via infiltration of SrTi 0.3 Fe 0.6 Co 0.1 O 3−δ , while the fuel electrodes are either Ni-YSZ, STF, STFN, or STFR. Fuel cell power density as high as 1.12 W cm −2 is obtained at 0.7 V and 800 °C in humidified hydrogen and air with the STFR electrode, 60% higher than the same cell made with a Ni-YSZ electrode. Electrolysis current density as high as −1.72 A cm −2 is obtained at 1.3 V and 800 °C in 50% H 2 O to 50% H 2 mode; the STFR cell yields a value 72% higher than the same cell made with a Ni-YSZ electrode, and competitive with the widely used conventional Ni-YSZ-supported cells. The high performance is due in part to the low resistance of the thin YSZ electrolyte, and also to the low fuel electrode polarization resistance, which decreases with fuel electrode in the order: Ni-YSZ > STF > STFN > STFR. The high performance of the latter two electrodes is due to exsolution of catalytic metal nanoparticles; the results are discussed in terms of the microstructure and properties of each electrode material, and surface oxygen exchange resistance values are obtained over a range of conditions for STF, STFN, and STFN. The STF fuel electrodes also provide good stability during redox cycling. 
    more » « less
  5. In the marine sediment record, concentrations and isotope ratios of chromium (Cr) can be used to reconstruct ocean biogeochemical conditions. These reconstructions rely on a detailed understanding of the chemical pathways that Cr undergoes as it is transferred from the water column to the sediment record. We examined Cr concentrations in marine pore fluids and sediments from six continental margin sites, which can be grouped into two basic environments: (1) sites where sediments are oxygenated and rich in solid phase Mn (herein termed oxic), and (2) sites where sediments are organic C (Corg)-rich and oxygen is depleted (anoxic). We found Cr concentrations to be lower (maximum of 12 nM in pore fluids and 124 ppm sediment solid phase) at oxic sites compared with anoxic sites (maximum of 77 nM and 184 ppm). Our findings confirm previously published interpretations of dissolved Cr in pore fluids (Brumsack and Gieskes, 1983; Shaw et al., 1990). In oxic surface sediments, particulate Cr(III) can be oxidised by Mn oxides, which leads to elevated concentrations of dissolved Cr co-occurring at the same depth as elevated Mn concentrations in the sediment. Under these oxidising conditions, down-core sediments contain relatively low solid-phase Cr concentrations. In oxic sediments, Cr speciation reveals that most of the pore fluid Cr is in the Cr(VI) state. At the site where Mn oxide-rich sediments rest below an oxic water column, oxidative loss of Cr from the sediment to the bottom water leads to the lowest estimated Cr burial efficiency of the sites examined here. Under anoxic Corg-rich conditions, both pore fluids and sediment solid phases contain high Cr concentrations, with 40–80% of dissolved pore fluid Cr present as Cr(III). This enrichment of Cr appears to be tightly linked to the presence of high total organic carbon (TOC) content and scavenging of Cr by (organic) particles in the water column. Combined, these data highlight the strong dependence of Cr on both sedimentary redox conditions as well as biological productivity. Based on the data from modern continental margin sediments, we propose that Cr concentrations and isotope compositions of the authigenic sediment fraction may record a combination of redox conditions and biological productivity in the water column. If confirmed by Cr isotope analyses, these findings will add support for the notion that Cr may serve as a proxy for ocean biological and chemical sedimentological conditions. Thus, careful assessment of the impact of organic matter on Cr is required for reconstructions of redox conditions with sedimentary records. 
    more » « less