skip to main content


This content will become publicly available on January 1, 2025

Title: Interaction of impinging marangoni fields
Hypothesis: Surface tension gradient driven Marangoni flows originating from multiple sources are important to many industrial and medical applications, but the theoretical literature focuses on single surfactant sources. Understanding how two spreading surfactant sources interact allows insights from single source experiments to be applied to multi-source applications. Two key features of multi-source spreading – source translation and source deformation – can be explained by transport modeling of a two-source system. Modeling: Numerical simulations of two oleic acid disks placed at varying initial separation distances on a glycerol subphase were performed using COMSOL Multiphysics and compared to spreading of a single surfactant source. Findings: Interaction of two spreading sources can be split into three regimes: the independent regime – where each source is unaffected by the other, the interaction regime – where the presence of a second source alters one or more features of the spreading dynamics, and the quasi-one disk regime – where the two sources merge together. The translation of the sources, manifested as increasing separation distance between disk centers of mass, is driven by the flow fields within the subphase and the resultant surface deformation, while deformation of the sources occurs only once the surfactant fronts of the two sources meet.  more » « less
Award ID(s):
1921285
NSF-PAR ID:
10479817
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Colloid and Interface Science
Volume:
653
Issue:
PA
ISSN:
0021-9797
Page Range / eLocation ID:
807 to 820
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Unknown (Ed.)
    Abstract Hypothesis Surfactant-driven Marangoni spreading generates a fluid flow characterized by an outwardly moving “Marangoni ridge”. Spreading on thin and/or high viscosity subphases, as most of the prior literature emphasizes, does not allow the formation of capillary waves. On deep, low viscosity subphases, Marangoni stresses may launch capillary waves coupled with the Marangoni ridge, and new dependencies emerge for key spreading characteristics on surfactant thermodynamic and kinetic properties. Experiments and modeling Computational and physical experiments were performed using a broad range of surfactants to report the post-deposition motion of the surfactant front and the deformation of the subphase surface. Modeling coupled the Navier-Stokes and advective diffusion equations with an adsorption model. Separate experiments employed tracer particles or an optical density method to track surfactant front motion or surface deformation, respectively. Findings Marangoni stresses on thick subphases induce capillary waves, the slowest of which is co-mingled with the Marangoni ridge. Changing Marangoni stresses by varying the surfactant system alters the surfactant front velocity and the amplitude – but not the velocity – of the slowest capillary wave. As spreading progresses, the surfactant front and its associated surface deformation separate from the slowest moving capillary wave. 
    more » « less
  2. International Ocean Discovery Program (IODP) Expedition 399 will collect new cores from the Atlantis Massif (30°N; Mid-Atlantic Ridge), an oceanic core complex that has transformed our understanding of tectonic and magmatic processes at slow- and ultraslow-spreading ridges. The exposure of deep mantle rocks leads to serpentinization, with major consequences for the properties of the oceanic lithosphere, heat exchange between the ocean and crust, geochemical cycles, and microbial activity. The Lost City hydrothermal field (LCHF) is situated on its southern wall and vents warm (40°–95°C) alkaline fluids rich in hydrogen, methane, and abiotic organic molecules. The Atlantis Massif was the site of four previous expeditions (Integrated Ocean Drilling Program Expeditions 304, 305, and 340T and IODP Expedition 357) and numerous dredging and submersible expeditions. The deepest IODP hole in young (<2 My) oceanic lithosphere, Hole U1309D, was drilled 5 km north of the LCHF and reaches 1415 meters below seafloor (mbsf) through a primitive series of gabbroic rock. In contrast, during Expedition 357 a series of shallow (<16.4 mbsf) holes were drilled along the south wall of the massif, one within 0.4 km of the LCHF, and serpentinized peridotites were recovered. The hydrologic regime differs between the two locations, with a low permeability conductive regime in Hole U1309D and a high likelihood of deep permeability along the southern wall. Expedition 399 targets both locations to collect new data on ancient processes during deformation and alteration of detachment fault rocks. Recovered rocks and fluids will provide new insights into ongoing water-rock interactions, abiotic organic synthesis reactions, and the extent and diversity of life in the subseafloor in an actively serpentinizing system. We will deepen Hole U1309D to 2060 mbsf, where temperatures are expected to be ~220°C. The lithology is predicted to transition with depth from primarily gabbroic to more ultramafic material. Predicted temperatures are well above the known limits of life, so detectable hydrogen, methane, and organic molecules can be readily attributed to abiotic processes. A new ~200 m hole will be drilled on the southern ridge close to Expedition 357 Site M0069, where both deformed and undeformed serpentinites were recovered. We aim to recover a complete section through the detachment fault zone and to sample material that reflects the subseafloor biological, geochemical, and alteration processes that occur along the LCHF circulation pathway. Borehole fluids from both holes will be collected using both the Kuster Flow Through Sampler tool and the new Multi-Temperature Fluid Sampler tool. Wireline logging will provide information on downhole density and resistivity, image structural features, and document fracture orientations. A reentry system will be installed at proposed Site AMDH-02A, and Hole U1309D will be left open for future deep drilling, fluid sampling, and potentially borehole observatories. 
    more » « less
  3. Abstract Thermoresponsive polysaccharide-based materials with tunable transition temperatures regulating phase-separated microdomains offer substantial opportunities in tissue engineering and biomedical applications. To develop novel synthetic thermoresponsive polysaccharides, we employed versatile chemical routes to attach hydrophobic adducts to the backbone of hydrophilic dextran and gradually increased the hydrophobicity of the dextran chains to engineer phase separation. Conjugating methacrylate moieties to the dextran backbone yielded a continuous increase in macromolecular hydrophobicity that induced a reversible phase transition whose lower critical solution temperature can be modulated via variations in polysaccharide concentration, molecular weight, degree of methacrylation, ionic strength, surfactant, urea and Hofmeister salts. The phase separation is driven by increased hydrophobic interactions of methacrylate residues, where the addition of surfactant and urea disassociates hydrophobic interactions and eliminates phase transition. Morphological characterization of phase-separated dextran solutions via scanning electron and flow imaging microscopy revealed the formation of microdomains upon phase transition. These novel thermoresponsive dextrans exhibited promising cytocompatibility in cell culture where the phase transition exerted negligible effects on the attachment, spreading and proliferation of human dermal fibroblasts. Leveraging the conjugated methacrylate groups, we employed photo-initiated radical polymerization to generate phase-separated hydrogels with distinct microdomains. Our bottom-up approach to engineering macromolecular hydrophobicity of conventional hydrophilic, non-phase separating dextrans to induce robust phase transition and generate thermoresponsive phase-separated biomaterials will find applications in mechanobiology, tissue repair and regenerative medicine. 
    more » « less
  4. International Ocean Discovery Program (IODP) Expedition 399 collected new cores from the Atlantis Massif (30°N; Mid-Atlantic Ridge), an oceanic core complex that hosts the Lost City hydrothermal field (LCHF). Studies of the Atlantis Massif and the LCHF have transformed our understanding of tectonic, magmatic, hydrothermal, and microbial processes at slow-spreading ridges. The Atlantis Massif was the site of four previous expeditions (Integrated Ocean Drilling Program Expeditions 304, 305, and 340T and IODP Expedition 357) and numerous dredging and submersible expeditions. The deepest IODP hole in young (<2 My) oceanic lithosphere, Hole U1309D, was drilled ~5 km north of the LCHF and reached 1415 meters below seafloor (mbsf) through a series of primitive gabbroic rocks. A series of 17 shallow (<16.4 mbsf) holes were also drilled at 9 sites across the south wall of the massif during Expedition 357, recovering heterogeneous rock types including hydrothermally altered peridotites, gabbroic, and basaltic rocks. The hydrologic regime differs between the two locations, with a low permeability conductive regime in Hole U1309D and a high (and possibly deep-reaching) permeability regime along the southern wall. Expedition 399 targeted Hole U1309D and the southern wall area to collect new data on ancient processes during deformation and alteration of detachment fault rocks. The recovered rocks and fluids are providing new insights into past and ongoing water-rock interactions, processes of mantle partial melting and gabbro emplacement, deformation over a range of temperatures, abiotic organic synthesis reactions, and the extent and diversity of life in the subseafloor in an actively serpentinizing system. We sampled fluids and measured temperature in Hole U1309D before deepening it to 1498 mbsf. The thermal structure was very similar to that measured during Expedition 340T, and lithologies were comparable to those found previously in Hole U1309D. A significant zone of cataclasis and alteration was found at 1451–1474 mbsf. A new Hole U1601C (proposed Site AMDH-02A) was drilled on the southern ridge close to Expedition 357 Hole M0069A, where both deformed and undeformed serpentinites had previously been recovered. Rapid drilling rates achieved a total depth of 1267.8 mbsf through predominantly ultramafic (68%) and gabbroic (32%) rocks, far surpassing the previous drilling record in a peridotite-dominated system of 201 m. Recovery was excellent overall (71%) but particularly high in peridotite-dominated sections where recovery regularly exceeded 90%. The recovery of sizable sections of largely intact material will provide robust constraints on the architecture and composition of the oceanic mantle lithosphere. The deepest portions of the newly drilled borehole may be beyond the known limits of life, providing the means to assess the role of biological activity across the transition from a biotic to an abiotic regime. Borehole fluids from both holes were collected using both the Kuster Flow-Through Sampler and the new Multi-Temperature Fluid Sampler. Wireline logging in Hole U1601C provided information on downhole density and resistivity, imaged structural features, and documented fracture orientations. A reentry system was installed in Hole U1601C, and both it and Hole U1309D were left open for future deep drilling, fluid sampling, and potential borehole observatories. 
    more » « less
  5. Abstract

    We developed an open source, extensible Python‐based framework, that we call the Versatile Modeling Of Deformation (VMOD), for forward and inverse modeling of crustal deformation sources. VMOD abstracts from specific source model implementations, data types and inversion methods. We implement the most common geodetic source models which can be combined to model and analyze multi‐source deformation. VMOD supports Global Navigation Satellite System (GNSS), InSAR, electronic distance measurement, Leveling and tilt data. To infer source characteristics from observations, VMOD implements non‐linear least squares and Markov Chain Monte‐Carlo Bayesian inversions, including joint inversions using different sources of data. VMOD's structure allows for easy integration of new geodetic models, data types, and inversion strategies. We benchmark the forward models against other published results and the inversion approaches against other implementations. We apply VMOD to analyze deformation at Unimak Island, Alaska, observed with continuous and campaign GNSS, and ascending and descending InSAR time series generated from Sentinel‐1 satellite radar acquisitions. These data show an inflation pattern at Westdahl volcano and subsidence at Fisher Caldera. We use VMOD to test a range of source models by jointly inverting the GNSS and InSAR data sets. Our final model simultaneously constrains the parameters of two sources. Our results reveal a depressurizing spheroid under Fisher Caldera ∼4–6 km deep, contracting at a rate of ∼2–3 Mm3/yr, and a pressurizing spherical source underneath Westdahl volcano ∼6–8 km deep, inflating at ∼5 Mm3/yr. This and past applications of VMOD to volcanic unrest benefit from an extensible framework which supports jointly inversions of data sets for parameters of easily composable multi‐source models.

     
    more » « less