skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inverse Design of a Terahertz Quantum Algorithm Emulator
A metastructure-based on a graded-index lens is presented for the terahertz regime as an emulator for quantum algorithms. Further optimization is presented by applying machine learning in an inverse design strategy.  more » « less
Award ID(s):
1747426
PAR ID:
10479820
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
ISBN:
978-1-957171-25-8
Page Range / eLocation ID:
JTh2A.116
Format(s):
Medium: X
Location:
San Jose, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this work, a new theoretical model for contact resonance atomic force microscopy, which incorporates the elastic dynamics of a long sensing tip is presented. The model is based on the Euler–Bernoulli beam theory and includes coupling effects from the two-beam structure, also known as an ‘L-shaped’ beam in the literature. Here, high-accuracy prediction of the sample stiffness, using several vibration modes with a relative error smaller than 10% for practical working ranges, is demonstrated. A discussion on the model’s capability to predict the dynamic phenomena of eigenmode veering and crossing, as the force applied to the sample increases, is presented. The L-shaped beam model presented here is also applicable for structural applications such as: micro-electro-mechanical systems, energy harvesting, and unmanned aerial vehicle landing gear. 
    more » « less
  2. null (Ed.)
    Abstract In this paper, an experimental forced response analysis for a two degree of freedom piecewise-linear oscillator is discussed. First, a mathematical model of the piecewise linear oscillator is presented. Second, the experimental setup developed for the forced response study is presented. The experimental setup is capable of investigating a two degree of freedom piecewise linear oscillator model. The piecewise linearity is achieved by attaching mechanical stops between two masses that move along common shafts. Forced response tests have been conducted, and the results are presented. Discussion of characteristics of the oscillators are provided based on frequency response, spectrogram, time histories, phase portraits, and Poincaré sections. Period doubling bifurcation has been observed when the excitation frequency changes from a frequency with multiple contacts between the masses to a frequency with single contact between the masses occurs. 
    more » « less
  3. A reliable approach based on an entropy-damage model for assessing remaining useful fatigue life is presented. Two damage models are presented and evaluated to assess their effectiveness in predicting remaining useful life. The first model focuses on reduced toughness caused by fatigue degradation, while the second is based on accumulating entropy during fatigue loading. The entropy-based approach employs infrared thermography to anticipate entropy accumulation and damage status. Outcomes reveal that the entropy-driven technique offers enhanced precision. Moreover, its damage growth rate remains consistent, regardless of the number of cycles leading to failure, ensuring a more stable tracking of damage evolution. It successfully predicts the remaining useful life and can treat variable load sequencing without knowing the loading history. An extensive set of experimental results with carbon steel 1018 are presented to illustrate the utility of the approach. 
    more » « less
  4. In the pursuit of developing high‐temperature alloys with improved properties for meeting the performance requirements of next‐generation energy and aerospace demands, integrated computational materials engineering has played a crucial role. Herein, a machine learning approach is presented, capable of predicting the temperature‐dependent yield strengths of superalloys utilizing a bilinear log model. Importantly, the model introduces the parameter break temperature,Tbreak, which serves as an upper boundary for operating conditions, ensuring acceptable mechanical performance. In contrast to conventional black‐box approaches, our model is based on the underlying fundamental physics built directly into the model. A technique of global optimization, one allowing the concurrent optimization of model parameters over the low‐ and high‐temperature regimes, is presented. The results presented extend previous work on high‐entropy alloys (HEAs) and offer further support for the bilinear log model and its applicability for modeling the temperature‐dependent strength behavior of superalloys as well as HEAs. 
    more » « less
  5. An innovative integrated route for CO2capture and conversion to methane relying on inexpensive metal hydroxides and nickel-based catalysts is presented. 
    more » « less