skip to main content


Title: Formation of robust bound states of interacting microwave photons
Abstract

Systems of correlated particles appear in many fields of modern science and represent some of the most intractable computational problems in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles1. The lack of general solutions for the three-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multiparticle bound states2–9. Here we develop a high-fidelity parameterizable fSim gate and implement the periodic quantum circuit of the spin-½ XXZ model in a ring of 24 superconducting qubits. We study the propagation of these excitations and observe their bound nature for up to five photons. We devise a phase-sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the idea that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit.

 
more » « less
Award ID(s):
1747426
NSF-PAR ID:
10479838
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Science
Date Published:
Journal Name:
Nature
Volume:
612
Issue:
7939
ISSN:
0028-0836
Page Range / eLocation ID:
240 to 245
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND Landau’s Fermi liquid theory provides the bedrock on which our understanding of metals has developed over the past 65 years. Its basic premise is that the electrons transporting a current can be treated as “quasiparticles”—electron-like particles whose effective mass has been modified, typically through interactions with the atomic lattice and/or other electrons. For a long time, it seemed as though Landau’s theory could account for all the many-body interactions that exist inside a metal, even in the so-called heavy fermion systems whose quasiparticle mass can be up to three orders of magnitude heavier than the electron’s mass. Fermi liquid theory also lay the foundation for the first successful microscopic theory of superconductivity. In the past few decades, a number of new metallic systems have been discovered that violate this paradigm. The violation is most evident in the way that the electrical resistivity changes with temperature or magnetic field. In normal metals in which electrons are the charge carriers, the resistivity increases with increasing temperature but saturates, both at low temperatures (because the quantized lattice vibrations are frozen out) and at high temperatures (because the electron mean free path dips below the smallest scattering pathway defined by the lattice spacing). In “strange metals,” by contrast, no saturation occurs, implying that the quasiparticle description breaks down and electrons are no longer the primary charge carriers. When the particle picture breaks down, no local entity carries the current. ADVANCES A new classification of metallicity is not a purely academic exercise, however, as strange metals tend to be the high-temperature phase of some of the best superconductors available. Understanding high-temperature superconductivity stands as a grand challenge because its resolution is fundamentally rooted in the physics of strong interactions, a regime where electrons no longer move independently. Precisely what new emergent phenomena one obtains from the interactions that drive the electron dynamics above the temperature where they superconduct is one of the most urgent problems in physics, attracting the attention of condensed matter physicists as well as string theorists. One thing is clear in this regime: The particle picture breaks down. As particles and locality are typically related, the strange metal raises the distinct possibility that its resolution must abandon the basic building blocks of quantum theory. We review the experimental and theoretical studies that have shaped our current understanding of the emergent strongly interacting physics realized in a host of strange metals, with a special focus on their poster-child: the copper oxide high-temperature superconductors. Experiments are highlighted that attempt to link the phenomenon of nonsaturating resistivity to parameter-free universal physics. A key experimental observation in such materials is that removing a single electron affects the spectrum at all energy scales, not just the low-energy sector as in a Fermi liquid. It is observations of this sort that reinforce the breakdown of the single-particle concept. On the theoretical side, the modern accounts that borrow from the conjecture that strongly interacting physics is really about gravity are discussed extensively, as they have been the most successful thus far in describing the range of physics displayed by strange metals. The foray into gravity models is not just a pipe dream because in such constructions, no particle interpretation is given to the charge density. As the breakdown of the independent-particle picture is central to the strange metal, the gravity constructions are a natural tool to make progress on this problem. Possible experimental tests of this conjecture are also outlined. OUTLOOK As more strange metals emerge and their physical properties come under the scrutiny of the vast array of experimental probes now at our disposal, their mysteries will be revealed and their commonalities and differences cataloged. In so doing, we should be able to understand the universality of strange metal physics. At the same time, the anomalous nature of their superconducting state will become apparent, offering us hope that a new paradigm of pairing of non-quasiparticles will also be formalized. The correlation between the strength of the linear-in-temperature resistivity in cuprate strange metals and their corresponding superfluid density, as revealed here, certainly hints at a fundamental link between the nature of strange metallicity and superconductivity in the cuprates. And as the gravity-inspired theories mature and overcome the challenge of projecting their powerful mathematical machinery onto the appropriate crystallographic lattice, so too will we hope to build with confidence a complete theory of strange metals as they emerge from the horizon of a black hole. Curved spacetime with a black hole in its interior and the strange metal arising on the boundary. This picture is based on the string theory gauge-gravity duality conjecture by J. Maldacena, which states that some strongly interacting quantum mechanical systems can be studied by replacing them with classical gravity in a spacetime in one higher dimension. The conjecture was made possible by thinking about some of the fundamental components of string theory, namely D-branes (the horseshoe-shaped object terminating on a flat surface in the interior of the spacetime). A key surprise of this conjecture is that aspects of condensed matter systems in which the electrons interact strongly—such as strange metals—can be studied using gravity. 
    more » « less
  2. We study interacting fermions in one dimension subject to random, uncorrelated onsite disorder, a paradigmatic model of many‐body localization (MBL). This model realizes an interaction‐driven quantum phase transition between an ergodic and a many‐body localized phase, with the transition occurring in the many‐body eigenstates. We propose a single‐particle framework to characterize these phases by the eigenstates (the natural orbitals) and the eigenvalues (the occupation spectrum) of the one‐particle density matrix (OPDM) in individual many‐body eigenstates. As a main result, we find that the natural orbitals are localized in the MBL phase, but delocalized in the ergodic phase. This qualitative change in these single‐particle states is a many‐body effect, since without interactions the single‐particle energy eigenstates are all localized. The occupation spectrum in the ergodic phase is thermal in agreement with the eigenstate thermalization hypothesis, while in the MBL phase the occupations preserve a discontinuity at an emergent Fermi edge. This suggests that the MBL eigenstates are weakly dressed Slater determinants, with the eigenstates of the underlying Anderson problem as reference states. We discuss the statistical properties of the natural orbitals and of the occupation spectrum in the two phases and as the transition is approached. Our results are consistent with the existing picture of emergent integrability and localized integrals of motion, or quasiparticles, in the MBL phase. We emphasize the close analogy of the MBL phase to a zero‐temperature Fermi liquid: in the studied model, the MBL phase is adiabatically connected to the Anderson insulator and the occupation‐spectrum discontinuity directly indicates the presence of quasiparticles localized in real space. Finally, we show that the same picture emerges for interacting fermions in the presence of an experimentally‐relevant bichromatic lattice and thereby demonstrate that our findings are not limited to a specific model.image

     
    more » « less
  3. The interplay between magnetic fields and interacting particles can lead to exotic phases of matter that exhibit topological order and high degrees of spatial entanglement1. Although these phases were discovered in a solid-state setting2,3, recent innovations in systems of ultracold neutral atoms—uncharged atoms that do not naturally experience a Lorentz force—allow the synthesis of artificial magnetic, or gauge, fields4,5,6,7,8,9,10. This experimental platform holds promise for exploring exotic physics in fractional quantum Hall systems, owing to the microscopic control and precision that is achievable in cold-atom systems11,12. However, so far these experiments have mostly explored the regime of weak interactions, which precludes access to correlated many-body states4,13,14,15,16,17. Here, through microscopic atomic control and detection, we demonstrate the controlled incorporation of strong interactions into a two-body system with a chiral band structure. We observe and explain the way in which interparticle interactions induce chirality in the propagation dynamics of particles in a ladder-like, real-space lattice governed by the interacting Harper–Hofstadter model, which describes lattice-confined, coherently mobile particles in the presence of a magnetic field18. We use a bottom-up strategy to prepare interacting chiral quantum states, thus circumventing the challenges of a top-down approach that begins with a many-body system, the size of which can hinder the preparation of controlled states. Our experimental platform combines all of the necessary components for investigating highly entangled topological states, and our observations provide a benchmark for future experiments in the fractional quantum Hall regime. 
    more » « less
  4. Abstract

    The leakage of quantum information out of the two computational states of a qubit into other energy states represents a major challenge for quantum error correction. During the operation of an error-corrected algorithm, leakage builds over time and spreads through multi-qubit interactions. This leads to correlated errors that degrade the exponential suppression of the logical error with scale, thus challenging the feasibility of quantum error correction as a path towards fault-tolerant quantum computation. Here, we demonstrate a distance-3 surface code and distance-21 bit-flip code on a quantum processor for which leakage is removed from all qubits in each cycle. This shortens the lifetime of leakage and curtails its ability to spread and induce correlated errors. We report a tenfold reduction in the steady-state leakage population of the data qubits encoding the logical state and an average leakage population of less than 1 × 10−3throughout the entire device. Our leakage removal process efficiently returns the system back to the computational basis. Adding it to a code circuit would prevent leakage from inducing correlated error across cycles. With this demonstration that leakage can be contained, we have resolved a key challenge for practical quantum error correction at scale.

     
    more » « less
  5. The recent emerging field of synthetic dimension in photonics offers a variety of opportunities for manipulating different internal degrees of freedom of photons such as the spectrum of light. While nonlinear optical effects can be incorporated into these photonic systems with synthetic dimensions, these nonlinear effects typically result in long-range interactions along the frequency axis. Thus, it has been difficult to use the synthetic dimension concept to study a large class of Hamiltonians that involves local interactions. Here we show that a Hamiltonian that is locally interacting along the synthetic dimension can be achieved in a dynamically modulated ring resonator incorporatingχ(3)nonlinearity, provided that the group velocity dispersion of the waveguide forming the ring is specifically designed. As a demonstration we numerically implement a Bose–Hubbard model and explore photon blockade effect in the synthetic frequency space. Our work opens new possibilities for studying fundamental many-body physics in the synthetic space in photonics, with potential applications in optical quantum communication and quantum computation.

     
    more » « less