skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Board 34: Work in Progress: Simple, Scalable Interventions to Address Academic and Mental-Health Barriers in Engineering Undergraduates
The 2021 return to face-to-face teaching and proctored exams revealed significant gaps in student learning during remote instruction. The challenge of supporting underperforming students is not expected to abate in the next 5-10 years as COVID-19-related learning losses compound structural inequalities in K-12 education. More recently, anecdotal evidence across courses shows declines in classroom attendance and student engagement. Lack of engagement indicates emotional barriers rather than intellectual deficiencies, and its growth coincides with the ongoing mental health epidemic. Regardless of the underlying reasons, professors are now faced with the unappealing choice of awarding failing grades to an uncomfortably large fraction of classes or awarding passing grades to students who do not seem prepared for the workforce or adult life in general. Faculty training, if it exists, addresses neither the scale of this situation nor the emotional/identity aspects of the problem. There is an urgent need for pedagogical remediation tools that can be applied without additional TA or staff resources, without training in psychiatry, and with only five or eight weeks remaining in the semester. This work presents two work-in-progress interventions for engineering faculty who face the challenges described above. In the first intervention, students can improve their exam score by submitting videos of reworked exams. The requirement of voiceover forces students to understand the thought process behind problems, even if they have copied the answers from a friend. Incorporating peer review into the assignment reduces the workload for instructor grading. This intervention has been successfully implemented in sophomore- and senior-level courses with positive feedback from both faculty and students. In the second intervention, students who fail the midterm are offered an automatic passing exam grade (typically 51%) in exchange for submitting a knowledge inventory and remediation plan. Students create a glossary of terms and concepts from the class and rank them by their level of understanding. Recent iterations of the remediation plan also include reflections on emotions and support networks. In February 2023, the project team will scale the interventions to freshman-level Introductory Programming, which has 400 students and the highest fail/withdrawal rate in the college. The large sample size will enable more robust statistics to correlate exam scores, intervention rubric items, and surveys on assignment effectiveness. Piloting interventions in a variety of environments and classes will establish best pedagogical practices that minimize instructors’ workload and decision fatigue. The ultimate goal of this project is to benefit students and faculty through well-defined and systematic interventions across the curriculum.  more » « less
Award ID(s):
1751553
PAR ID:
10479839
Author(s) / Creator(s):
; ;
Publisher / Repository:
2023 ASEE Annual Conference and Exposition
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Intervention in the form of changing one's teaching style is beneficial for boosting student grades and retention. However, in spite of the availability of multiple intervention approaches, a key hindrance is reliance on the belief that students know how to study. We dedicated time and resources to not only teach the discipline of Computer Science, but also to teach students how to study using techniques grounded in psychology. We offered a one-credit "booster" course to students taking CS 2: Data Structures. Through direct advisor intervention based on the first exam grade, students were encouraged to take the booster course along with traditional interventions. We then tracked student growth across exams for the course as students were learning and being held accountable to study techniques not often emphasized in Computer Science. The students continued to increase their grades throughout the semester relative to the students who chose to not take the booster class. The students who were targeted for intervention but did not take the booster course continued to have lower grades throughout the semester, and only 41% of them passed the course. Students who participated in the booster course showed a 31% rate of growth across the semester, taking a failing grade to a passing grade, with 100% passing the course with a C or above. These results show a significant influence to help students succeed, which led to higher retention and increased grades. If we want students to truly succeed, we must teach them to study. 
    more » « less
  2. Student performance and retention in STEM majors is a major concern in higher education. Individual attention and coaching are effective at improving the retention of under-performing students, but these tools are too labor-intensive for faculty to apply in large introductory courses. Additionally, many struggling students are limited by non-cognitive factors such as fear of failure, social anxiety, and general overwhelm. There is a need for large-format, scalable instructional tools that both engage students in course material and address non-cognitive factors in an appropriate way. This Work In Progress will present the effects of a remedial intervention, the “reflective knowledge inventory”, at improving student outcomes in Calculus 1. This intervention was developed over several years in sophomore through senior-level engineering classes post-pandemic. In the intervention, students improve their exam score by submitting a “reflective knowledge inventory”. Expert learners know that new skills are best built on existing knowledge, and that big problems should be broken into smaller tasks. Novice learners are more likely to feel overwhelmed and panicked, especially when they know they are underperforming. We attempted to design a remedial assignment that scaffolds students through the process of identifying technical strengths to build on and breaking weaknesses into manageable chunks. Briefly, students create a glossary of terms and concepts from the class and rank them by their level of understanding. Importantly, the assignment also includes reflections on emotions, barriers, and support networks. This work will combine quantitative analysis of student grades with thematic analysis of student submissions to determine the effectiveness of the intervention. 
    more » « less
  3. Preparing for high-stakes exams in introductory physics courses is generally a self-regulated activity. Compared to other exam reviewing strategies, doing practice exams has been shown to help students recognize gaps in their knowledge, encourage active practicing, and produce long-term retention. However, many students, particularly students who are struggling with the course material, are not guided by research-based study strategies and do not use practice exams effectively. Using data collected from a fully online course in Spring 2021, this study examines two interventions aimed at improving student selfregulated studying behaviors and enhancing student metacognition during exam preparation. We found that a modified format of online practice exams with one attempt per question and delayed feedback, increases the accuracy of feedback about student readiness for exams but does not change the accuracy of their predicted exam scores or studying behaviors. Additionally, an added mock exam one week before the actual exam impacts students’ intentions for studying but does not impact actual study behaviors or facilitate metacognition. These results suggest that interventions designed to improve exam preparation likely need to include explicit instruction on study strategies and student beliefs about learning. 
    more » « less
  4. Henderson, Charles (Ed.)
    Preparing for high-stakes exams in introductory physics courses is generally a self-regulated activity. Compared to other exam reviewing strategies, doing practice exams has been shown to help students recognize gaps in their knowledge, encourage active practicing, and produce long-term retention. However, many students, particularly students who are struggling with the course material, are not guided by research-based study strategies and do not use practice exams effectively. Using data collected from a fully online course in Spring 2021, this study examines two interventions aimed at improving student selfregulated studying behaviors and enhancing student metacognition during exam preparation. We found that a modified format of online practice exams with one attempt per question and delayed feedback, increases the accuracy of feedback about student readiness for exams but does not change the accuracy of their predicted exam scores or studying behaviors. Additionally, an added mock exam one week before the actual exam impacts students’ intentions for studying but does not impact actual study behaviors or facilitate metacognition. These results suggest that interventions designed to improve exam preparation likely need to include explicit instruction on study strategies and student beliefs about learning. 
    more » « less
  5. This project aims to enhance students’ learning in foundational engineering courses through oral exams based on the research conducted at the University of California San Diego. The adaptive dialogic nature of oral exams provides instructors an opportunity to better understand students’ thought processes, thus holding promise for improving both assessments of conceptual mastery and students’ learning attitudes and strategies. However, the issues of oral exam reliability, validity, and scalability have not been fully addressed. As with any assessment format, careful design is needed to maximize the benefits of oral exams to student learning and minimize the potential concerns. Compared to traditional written exams, oral exams have a unique design space, which involves a large range of parameters, including the type of oral assessment questions, grading criteria, how oral exams are administered, how questions are communicated and presented to the students, how feedback were provided, and other logistical perspectives such as weight of oral exam in overall course grade, frequency of oral assessment, etc. In order to address the scalability for high enrollment classes, key elements of the project are the involvement of the entire instructional team (instructors and teaching assistants). Thus the project will create a new training program to prepare faculty and teaching assistants to administer oral exams that include considerations of issues such as bias and students with disabilities. The purpose of this study is to create a framework to integrate oral exams in core undergraduate engineering courses, complementing existing assessment strategies by (1) creating a guideline to optimize the oral exam design parameters for the best students learning outcomes; and (2) Create a new training program to prepare faculty and teaching assistants to administer oral exams. The project will implement an iterative design strategy using an evidence-based approach of evaluation. The effectiveness of the oral exams will be evaluated by tracking student improvements on conceptual questions across consecutive oral exams in a single course, as well as across other courses. Since its start in January 2021, the project is well underway. In this poster, we will present a summary of the results from year 1: (1) exploration of the oral exam design parameters, and its impact in students’ engagement and perception of oral exams towards learning; (2) the effectiveness of the newly developed instructor and teaching assistants training programs (3) The development of the evaluation instruments to gauge the project success; (4) instructors and teaching assistants experience and perceptions. 
    more » « less