skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Concentration-runoff relationships of contrasting small mountainous rivers in the Pacific Northwest, USA: Insights into the weathering of rhenium relative to other weathering products
This study examines dissolved rhenium (Re) concentrations as a function of water runoff using river samples from two contrasting mountainous watersheds, the Eel and Umpqua Rivers in the Pacific Northwest, USA. These watersheds share many key characteristics in terms of size, discharge, climate, and vegetation, but they have a 15-fold difference in sediment yield due to differences in their tectonic setting and uplift and erosion rates. We evaluate concentration-runoff (C-R) relationships and ratios of coefficients of variation (CVC/CVR) for major cations, anions, dissolved inorganic carbon, selected trace elements including Re, and 87Sr/86Sr ratios. Recent research outlines the potential of Re to serve as a tracer for the oxidation of ancient/fossil organic matter because of its close association with petrogenic carbon (OCpetro) in rocks. In both the Eel and Umpqua Rivers, our measurements show that Re behaves similarly to major weathering derived-solutes corrected for atmospheric input, such as Ca2+*, Mg2+*, and Na+* with modest dilution across all tributaries with increasing runoff. Rhenium behaves dissimilarly from other trace elements, such as Mo and U, and is also dissimilar to biologically-cycled nutrients, such as NO3 – , PO4 3 , and K+*, suggesting differences in sources, solute generation mechanisms, and flowpaths. Rhenium behavior is also distinct from that of colloids, which have increasing concentrations with increasing runoff. We find that Re and sulfate corrected for atmospheric input (SO4 2 *) have distinct CR relationships, in which SO4 2 * undergoes greater dilution with increasing runoff. This implies that Re is not dominantly sourced from sulfide weathering, which leaves primary bedrock minerals and OCpetro hosted in bedrock of these watersheds as the likely dominant sources of dissolved Re release. At mean discharge, Re concentration in the Eel river (3.5 pmol L-1) is more than two times greater than Re concentrations in the Umpqua River (1.5 pmol L-1). Furthermore, comparison of two tributary watersheds with similar bedrock but marked differences in erosion rates show higher Re concentrations in Bull Creek (erosion rate of 0.5 mm yr 1) relative to Elder Creek (erosion rate of 0.2 mm yr 1). The results of this study suggest that dissolved Re in the Eel and Umpqua River basins is likely derived from primary mineral dissolution or OCpetro oxidation, and Re fluxes are higher in areas with higher erosion rates, suggesting that tectonic setting is one factor that controls Re release and therefore OCpetro oxidation.  more » « less
Award ID(s):
1655506
PAR ID:
10479856
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Geochimica et Cosmochimica Acta
Date Published:
Journal Name:
Geochimica et Cosmochimica Acta
Volume:
337
Issue:
C
ISSN:
0016-7037
Page Range / eLocation ID:
106 to 122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper is the first comprehensive synthesis of what is currently known about the different natural and anthropogenic fluxes of rhenium (Re) on Earth's surface. We highlight the significant role of anthropogenic mobilization of Re, which is an important consideration in utilizing Re in the context of a biogeochemical tracer or proxy. The largest natural flux of Re derives from chemical weathering and riverine transport to the ocean (dissolved = 62 × 106 g yr−1and particulate = 5 × 106 g yr−1). This review reports a new global average [Re] of 16 ± 2 pmol L−1, or 10 ± 1 pmol L−1for the inferred pre‐anthropogenic concentration without human impact, for rivers draining to the ocean. Human activity via mining (including secondary mobilization), coal combustion, and petroleum combustion mobilize approximately 560 × 106 g yr−1Re, which is more than any natural flux of Re. There are several poorly constrained fluxes of Re that merit further research, including: submarine groundwater discharge, precipitation (terrestrial and oceanic), magma degassing, and hydrothermal activity. The mechanisms and the main host phases responsible for releasing (sources) or sequestrating (sinks) these fluxes remain poorly understood. This study also highlights the use of dissolved [Re] concentrations as a tracer of oxidation of petrogenic organic carbon, and stable Re isotopes as proxies for changes in global redox conditions. 
    more » « less
  2. Abstract Rock weathering impacts atmospheric CO2levels with silicate rock dissolution removing CO2,and carbonate dissolution, pyrite oxidation, and organic rock carbon oxidation producing CO2. Glacierization impacts the hydrology and geomorphology of catchments and glacier retreat due to warming can increase runoff and initiate landscape succession. To investigate the impact of these changes on catchment scale weathering CO2balances, we report monthly samples of solute chemistry and continuous discharge records for a sequence of glacierized watersheds draining into Kachemak Bay, Alaska. We partition solute and acid sources and estimate inorganic weathering CO2balances using an inverse geochemical mixing model. Furthermore, we investigated how solutes vary with discharge conditions utilizing a concentration‐runoff framework. We develop an analogous fraction‐runoff framework which allows us to investigate changes in weathering contributions at different flows. Fraction‐runoff relationships suggest kinetic limitations on all reactions in glacierized catchments, and only silicate weathering in less glacierized catchments. Using forest cover as a proxy for landscape age and stability, multiple linear regression shows that faster reactions (pyrite oxidation) contribute less to the solute load with increasing forest cover, whereas silicate weathering (slow reaction kinetics) contributes more. Overall, in glacierized catchments, we find elevated weathering fluxes at high runoff despite significant dilution effects. This makes flux estimates that account for dilution more important in glacierized catchments. Our findings quantify how glaciers modify the inorganic weathering CO2balance of catchments through hydrologic and geomorphic forcings, and support the previous hypothesis that deglaciation will be accompanied by a shift in inorganic weathering CO2balances. 
    more » « less
  3. Abstract Lithium isotope ratios (δ7Li) of rivers are increasingly serving as a diagnostic of the balance between chemical and physical weathering contributions to overall landscape denudation rates. Here, we show that intermediate weathering intensities and highly enriched stream δ7Li values typically associated with lowland floodplains can also describe small upland watersheds subject to cool, wet climates. This behavior is revealed by stream δ7Li between +22.4 and +23.5‰ within a Critical Zone observatory located in the Cévennes region of southern France, where dilute stream solute concentrations and significant atmospheric deposition otherwise mask evidence of incongruence. The water‐rock reaction pathways underlying this behavior are quantified through a multicomponent, isotope‐enabled reactive transport model. Using geochemical characterization of soil profiles, bedrock, and long‐term stream samples as constraints, we evolve the simulation from an initially unweathered granite to a steady state weathering profile which reflects the balance between (a) fluid infiltration and drainage and (b) bedrock uplift and soil erosion. Enriched stream δ7Li occurs because Li is strongly incorporated into actively precipitating secondary clay phases beyond what prior laboratory experiments have suggested. Chemical weathering incongruence is maintained despite relatively slow reaction rates and moderate clay accumulation due to a combination of two factors. First, reactive primary mineral phases persist across the weathering profile and effectively “shield” the secondary clays from resolubilization due to their greater solubility. Second, the clays accumulating in the near‐surface profile are relatively mature weathering byproducts. These factors promote characteristically low total dissolved solute export from the catchment despite significant input of exogenous dust. 
    more » « less
  4. Abstract Weathering of ultramafic rocks emplaced at low latitude during arc‐arc and arc‐continent collisions may provide an important sink for atmospheric CO2over geologic timescales. Accurately modeling the effects of ultramafic rock weathering on Earth's carbon cycle and climate requires understanding mass fluxes from ultramafic landscapes. In this study, physical erosion and chemical weathering fluxes and weathering intensity are quantified in 15 watersheds across the Monte del Estado, a serpentinite massif in Puerto Rico, using measurements of in situ36Cl in magnetite, stream solute fluxes, and sediment geochemistry. Despite high relief in the study watersheds, erosion fluxes are moderate (22–109 tons km−2 yr−1), chemical weathering fluxes are large (55–143 tons km−2 yr−1), and weathering intensities are among the highest yet reported for silicate‐rock weathering (up to 0.88). We use these data to parameterize power‐law relationships between weathering, erosion, and runoff. We interpret the relative importance of climate versus erosion in setting weathering fluxes and CO2consumption from the best‐fit power‐law slopes. Weathering fluxes from tropical, montane serpentinite landscapes are found to be strongly controlled by runoff and weakly controlled by the supply of fresh rock to the weathering zone through physical erosion. The strong runoff dependence of weathering fluxes implies that, to the extent that precipitation rates are coupled to global temperature, ultramafic landscapes may be important participants in the negative silicate weathering feedback, increasing (decreasing) CO2consumption in response to a warming (cooling) climate. Thus, serpentinite landscapes may help stabilize Earth's climate state through time. 
    more » « less
  5. Abstract. Carbonate rocks are highly reactive and can have higher ratios of chemical weathering to total denudation relative to most other rock types. Their chemical reactivity affects the first-order morphology of carbonate-dominated landscapes and their climate sensitivity to weathering.However, there have been few efforts to quantify the partitioning ofdenudation into mechanical erosion and chemical weathering in carbonatelandscapes such that their sensitivity to changing climatic and tectonicconditions remains elusive. Here, we compile bedrock and catchment-averagedcosmogenic calcite–36Cl denudation rates and compare them to weathering rates derived from stream water chemistry from the same regions. Local bedrock denudation and weathering rates are comparable, ∼20–40 mm ka−1, whereas catchment-averaged denudation rates are ∼2.7 times higher. The discrepancy between bedrock and catchment-averaged denudation is 5 times lower compared to silicate-rich rocks, illustrating that elevated weathering rates make denudation more spatially uniform in carbonate-dominated landscapes. Catchment-averaged denudation rates correlate well with topographic relief and hillslope gradients, and moderate correlations with runoff can be explained by concurrent increases in weathering rates. Comparing denudation rates with weathering rates shows that mechanical erosion processes contribute ∼50 % of denudation in southern France and ∼70 % in Greece and Israel. Our results indicate that the partitioning between largely slope-independent chemical weathering and slope-dependent mechanical erosion varies based on climate and tectonics and impacts the landscape morphology. This leads us to propose a conceptual model whereby in humid, slowly uplifting regions, carbonates are associated with low-lying, flat topography because slope-independent chemical weathering dominates denudation. In contrast, in arid climates with rapid rock uplift rates, carbonate rocks form steep mountains that facilitate rapid, slope-dependent mechanical erosion required to compensate for inefficient chemical weathering and runoff loss to groundwater systems. This result suggests that carbonates represent an end member for interactions between climate, tectonics, and lithology. 
    more » « less