skip to main content


This content will become publicly available on November 30, 2024

Title: TEE-Graph: efficient privacy and ownership protection for cloud-based graph spectral analysis
Introduction

Big graphs like social network user interactions and customer rating matrices require significant computing resources to maintain. Data owners are now using public cloud resources for storage and computing elasticity. However, existing solutions do not fully address the privacy and ownership protection needs of the key involved parties: data contributors and the data owner who collects data from contributors.

Methods

We propose a Trusted Execution Environment (TEE) based solution: TEE-Graph for graph spectral analysis of outsourced graphs in the cloud. TEEs are new CPU features that can enable much more efficient confidential computing solutions than traditional software-based cryptographic ones. Our approach has several unique contributions compared to existing confidential graph analysis approaches. (1) It utilizes the unique TEE properties to ensure contributors' new privacy needs, e.g., the right of revocation for shared data. (2) It implements efficient access-pattern protection with a differentially private data encoding method. And (3) it implements TEE-based special analysis algorithms: the Lanczos method and the Nystrom method for efficiently handling big graphs and protecting confidentiality from compromised cloud providers.

Results

The TEE-Graph approach is much more efficient than software crypto approaches and also immune to access-pattern-based attacks. Compared with the best-known software crypto approach for graph spectral analysis, PrivateGraph, we have seen that TEE-Graph has 103−105times lower computation, storage, and communication costs. Furthermore, the proposed access-pattern protection method incurs only about 10%-25% of the overall computation cost.

Discussion

Our experimentation showed that TEE-Graph performs significantly better and has lower costs than typical software approaches. It also addresses the unique ownership and access-pattern issues that other TEE-related graph analytics approaches have not sufficiently studied. The proposed approach can be extended to other graph analytics problems with strong ownership and access-pattern protection.

 
more » « less
Award ID(s):
2232824
NSF-PAR ID:
10479980
Author(s) / Creator(s):
;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Big Data
Volume:
6
ISSN:
2624-909X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Confidential computing aims to secure the code and data in use by providing a Trusted Execution Environment (TEE) for applications using hardware features such as Intel SGX.Timing and cache side-channel attacks, however, are often outside the scope of the threat model, although once exploited they are able to break all the default security guarantees enforced by hardware. Unfortunately, tools detecting potential side-channel vulnerabilities within applications are limited and usually ignore the strong attack model and the unique programming model imposed by Intel SGX. This paper proposes a precise side-channel analysis tool, ENCIDER, detecting both timing and cache side-channel vulnerabilities within SGX applications via inferring potential timing observation points and incorporating the SGX programming model into analysis. ENCIDER uses dynamic symbolic execution to decompose the side-channel requirement based on the bounded non-interference property and implements byte-level information flow tracking via API modeling. We have applied ENCIDER to 4 real-world SGX applications, 2 SGX crypto libraries, and 3 widely-used crypto libraries, and found 29 timing side channels and 73 code and data cache side channels. We have reported our findings to the corresponding parties, e.g., Intel and ARM, who have confirmed most of the vulnerabilities detected. 
    more » « less
  2. Abstract Objective

    Emerging technologies (eg, wearable devices) have made it possible to collect data directly from individuals (eg, time-series), providing new insights on the health and well-being of individual patients. Broadening the access to these data would facilitate the integration with existing data sources (eg, clinical and genomic data) and advance medical research. Compared to traditional health data, these data are collected directly from individuals, are highly unique and provide fine-grained information, posing new privacy challenges. In this work, we study the applicability of a novel privacy model to enable individual-level time-series data sharing while maintaining the usability for data analytics.

    Methods and materials

    We propose a privacy-protecting method for sharing individual-level electrocardiography (ECG) time-series data, which leverages dimensional reduction technique and random sampling to achieve provable privacy protection. We show that our solution provides strong privacy protection against an informed adversarial model while enabling useful aggregate-level analysis.

    Results

    We conduct our evaluations on 2 real-world ECG datasets. Our empirical results show that the privacy risk is significantly reduced after sanitization while the data usability is retained for a variety of clinical tasks (eg, predictive modeling and clustering).

    Discussion

    Our study investigates the privacy risk in sharing individual-level ECG time-series data. We demonstrate that individual-level data can be highly unique, requiring new privacy solutions to protect data contributors.

    Conclusion

    The results suggest our proposed privacy-protection method provides strong privacy protections while preserving the usefulness of the data.

     
    more » « less
  3. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less
  4. Abstract Motivation

    Indexing reference sequences for search—both individual genomes and collections of genomes—is an important building block for many sequence analysis tasks. Much work has been dedicated to developing full-text indices for genomic sequences, based on data structures such as the suffix array, the BWT and the FM-index. However, the de Bruijn graph, commonly used for sequence assembly, has recently been gaining attention as an indexing data structure, due to its natural ability to represent multiple references using a graphical structure, and to collapse highly-repetitive sequence regions. Yet, much less attention has been given as to how to best index such a structure, such that queries can be performed efficiently and memory usage remains practical as the size and number of reference sequences being indexed grows large.

    Results

    We present a novel data structure for representing and indexing the compacted colored de Bruijn graph, which allows for efficient pattern matching and retrieval of the reference information associated with each k-mer. As the popularity of the de Bruijn graph as an index has increased over the past few years, so have the number of proposed representations of this structure. Existing structures typically fall into two categories; those that are hashing-based and provide very fast access to the underlying k-mer information, and those that are space-frugal and provide asymptotically efficient but practically slower pattern search. Our representation achieves a compromise between these two extremes. By building upon minimum perfect hashing and making use of succinct representations where applicable, our data structure provides practically fast lookup while greatly reducing the space compared to traditional hashing-based implementations. Further, we describe a sampling scheme for this index, which provides the ability to trade off query speed for a reduction in the index size. We believe this representation strikes a desirable balance between speed and space usage, and allows for fast search on large reference sequences.

    Finally, we describe an application of this index to the taxonomic read assignment problem. We show that by adopting, essentially, the approach of Kraken, but replacing k-mer presence with coverage by chains of consistent unique maximal matches, we can improve the space, speed and accuracy of taxonomic read assignment.

    Availability and implementation

    pufferfish is written in C++11, is open source, and is available at https://github.com/COMBINE-lab/pufferfish.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract Motivation

    The size of a genome graph—the space required to store the nodes, node labels and edges—affects the efficiency of operations performed on it. For example, the time complexity to align a sequence to a graph without a graph index depends on the total number of characters in the node labels and the number of edges in the graph. This raises the need for approaches to construct space-efficient genome graphs.

    Results

    We point out similarities in the string encoding mechanisms of genome graphs and the external pointer macro (EPM) compression model. We present a pair of linear-time algorithms that transform between genome graphs and EPM-compressed forms. The algorithms result in an upper bound on the size of the genome graph constructed in terms of an optimal EPM compression. To further reduce the size of the genome graph, we propose the source assignment problem that optimizes over the equivalent choices during compression and introduce an ILP formulation that solves that problem optimally. As a proof-of-concept, we introduce RLZ-Graph, a genome graph constructed based on the relative Lempel–Ziv algorithm. Using RLZ-Graph, across all human chromosomes, we are able to reduce the disk space to store a genome graph on average by 40.7% compared to colored compacted de Bruijn graphs constructed by Bifrost under the default settings. The RLZ-Graph scales well in terms of running time and graph sizes with an increasing number of human genome sequences compared to Bifrost and variation graphs produced by VGtoolkit.

    Availability

    The RLZ-Graph software is available at: https://github.com/Kingsford-Group/rlzgraph.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less