skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 9:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Low heat tolerance and high desiccation resistance in nocturnal bees and the implications for nocturnal pollination under climate change
Abstract

Predicting insect responses to climate change is essential for preserving ecosystem services and biodiversity. Due to high daytime temperatures and low humidity levels, nocturnal insects are expected to have lower heat and desiccation tolerance compared to diurnal species. We estimated the lower (CTMin) and upper (CTMax) thermal limits ofMegalopta, a group of neotropical, forest-dwelling bees. We calculated warming tolerance (WT) as a metric to assess vulnerability to global warming and measured survival rates during simulated heatwaves and desiccation stress events. We also assessed the impact of body size and reproductive status (ovary area) on bees’ thermal limits.Megaloptadisplayed lower CTMin, CTMax, and WTs than diurnal bees (stingless bees, orchid bees, and carpenter bees), but exhibited similar mortality during simulated heatwave and higher desiccation tolerance. CTMinincreased with increasing body size across all bees but decreased with increasing body size and ovary area inMegalopta, suggesting a reproductive cost or differences in thermal environments. CTMaxdid not increase with increasing body size or ovary area. These results indicate a greater sensitivity ofMegaloptato temperature than humidity and reinforce the idea that nocturnal insects are thermally constrained, which might threaten pollination services in nocturnal contexts during global warming.

 
more » « less
Award ID(s):
1755375 1950805
NSF-PAR ID:
10480004
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 1. Thermal tolerance has a strong predictive power for understanding the ecology and distribution of organisms, as well as their responses to changes in land use and global warming. However, relatively few studies have assessed thermal tolerances for bees.

    2. The present study aimed to determine whether the critical thermal maximum (CTmax) of carpenter bees (Apidae: genusXylocopaLatreille) varies with different patterns of foraging activity and elevation. In addition, the influence of body size, body water content and relative age was examined with respect to their CTmaxand differences in thoracic temperature (Tth) among species were evaluated.

    3. The CTmaxof one crepuscular (Xylocopaolivieri) and two diurnal species (XylocopaviolaceaandXylocopairis) of carpenter bees was assessed at sea level on the Greek island of Lesvos. To detect variation as a result of elevation, the CTmaxof a population ofX. violaceaat 625 m.a.s l. was assessed and compared with that from sea level.

    4.Xylocopa olivieridisplayed a similar CTmaxto that ofX. violaceabut lower than that ofX. iris. Body size, body water content, and relative age did not affect CTmax. InX. violacea, CTmaxdecreased with elevation and all three species have highTthindependent of ambient temperatures.

    5. The results of the present study are consistent with variations in CTmaxpredicted by broad spatial and temporal patterns reported for other insects, including honey and bumble bees. The implications of the results are discussed aiming to understand the differences in the foraging pattern of these bees.

     
    more » « less
  2. Globally, insects have been impacted by climate change, with bumble bees in particular showing range shifts and declining species diversity with global warming. This suggests heat tolerance is a likely factor limiting the distribution and success of these bees. Studies have shown high intraspecific variance in bumble bee thermal tolerance, suggesting biological and environmental factors may be impacting heat resilience. Understanding these factors is important for assessing vulnerability and finding environmental solutions to mitigate effects of climate change. In this study, we assess whether geographic range variation in bumble bees in the eastern United States is associated with heat tolerance and further dissect which other biological and environmental factors explain variation in heat sensitivity in these bees. We examine heat tolerance by caste, sex, and rearing condition (wild/lab) across six eastern US bumble bee species, and assess the role of age, reproductive status, body size, and interactive effects of humidity and temperature on thermal tolerance inBombus impatiens. We found marked differences in heat tolerance by species that correlate with each species' latitudinal range, habitat, and climatic niche, and we found significant variation in thermal sensitivity by caste and sex. Queens had considerably lower heat tolerance than workers and males, with greater tolerance when queens would first be leaving their natal nest, and lower tolerance after ovary activation. Wild bees tended to have higher heat tolerance than lab reared bees, and body size was associated with heat tolerance only in wild‐caught foragers. Humidity showed a strong interaction with heat effects, pointing to the need to regulate relative humidity in thermal assays and consider its role in nature. Altogether, we found most tested biological conditions impact thermal tolerance and highlight the stages of these bees that will be most sensitive to future climate change. 
    more » « less
  3. Global declines in abundance and diversity of insects are now well-documented and increasingly concerning given the critical and diverse roles insects play in all ecosystems. Habitat loss, invasive species, and anthropogenic chemicals are all clearly detrimental to insect populations, but mounting evidence implicates climate change as a key driver of insect declines globally. Warming temperatures combined with increased variability may expose organisms to extreme heat that exceeds tolerance, potentially driving local extirpations. In this context, heat tolerance limits (e.g., critical thermal maximum, CTmax) have been measured for many invertebrates and are often closely linked to climate regions where animals are found. However, temperatures well below CTmaxmay also have pronounced effects on insects, but have been relatively less studied. Additionally, many insects with out-sized ecological and economic footprints are colonial (e.g., ants, social bees, termites) such that effects of heat on individuals may propagate through or be compensated by the colony. For colonial organisms, measuring direct effects on individuals may therefore reveal little about population-level impacts of changing climates. Here, we use bumble bees (genusBombus) as a case study to highlight how a limited understanding of heat effects below CTmaxand of colonial impacts and responses both likely hinder our ability to explain past and predict future climate change impacts. Insights from bumble bees suggest that, for diverse invertebrates, predicting climate change impacts will require a more nuanced understanding of the effects of heat exposure and additional studies of carry-over effects and compensatory responses by colonies.

     
    more » « less
  4. Abstract

    Cities are rapidly expanding, and global warming is intensified in urban environments due to the urban heat island effect. Therefore, urban animals may be particularly susceptible to warming associated with ongoing climate change. We used a comparative and manipulative approach to test three related hypotheses about the determinants of heat tolerance or critical thermal maximum (CTmax) in urban ants—specifically, that (a) body size, (b) hydration status, and (c) chosen microenvironments influenceCTmax. We further tested a fourth hypothesis that native species are particularly physiologically vulnerable in urban environments. We manipulated water access and determinedCTmaxfor 11 species common to cities in California's Central Valley that exhibit nearly 300‐fold variation in body size. There was a moderate phylogenetic signal influencingCTmax, and inter (but not intra) specific variation in body size influencedCTmaxwhere larger species had higherCTmax. The sensitivity of ants’CTmaxto water availability exhibited species‐specific thresholds where short‐term water limitation (8 hr) reducedCTmaxand body water content in some species while longer‐term water limitation (32 hr) was required to reduce these traits in other species. However,CTmaxwas not related to the temperatures chosen by ants during activity. Further, we found support for our fourth hypothesis becauseCTmaxand estimates of thermal safety margin in native species were more sensitive to water availability relative to non‐native species. In sum, we provide evidence of links between heat tolerance and water availability, which will become critically important in an increasingly warm, dry, and urbanized world that others have shown may be selecting for smaller (not larger) body size.

     
    more » « less
  5. Abstract

    Global temperature changes have emphasized the need to understand how species adapt to thermal stress across their ranges. Genetic mechanisms may contribute to variation in thermal tolerance, providing evidence for how organisms adapt to local environments. We determine physiological thermal limits and characterize genome-wide transcriptional changes at these limits in bumble bees using laboratory-rearedBombus vosnesenskiiworkers. We analyze bees reared from latitudinal (35.7–45.7°N) and altitudinal (7–2154 m) extremes of the species’ range to correlate thermal tolerance and gene expression among populations from different climates. We find that critical thermal minima (CTMIN) exhibit strong associations with local minimums at the location of queen origin, while critical thermal maximum (CTMAX) was invariant among populations. Concordant patterns are apparent in gene expression data, with regional differentiation following cold exposure, and expression shifts invariant among populations under high temperatures. Furthermore, we identify several modules of co-expressed genes that tightly correlate with critical thermal limits and temperature at the region of origin. Our results reveal that local adaptation in thermal limits and gene expression may facilitate cold tolerance across a species range, whereas high temperature responses are likely constrained, both of which may have implications for climate change responses of bumble bees.

     
    more » « less